Java:由浅入深揭开 AOP 实现原理

article/2025/10/3 13:42:46

概述:

最近在开发中遇到了一个刚好可以用AOP实现的例子,就顺便研究了AOP的实现原理,把学习到的东西进行一个总结。文章中用到的编程语言为kotlin,需要的可以在IDEA中直接转为java。

这篇文章将会按照如下目录展开:

  • AOP简介

  • 代码中实现举例

  • AOP实现原理

  • 部分源码解析

1. AOP简介

相信大家或多或少的了解过AOP,都知道它是面向切面编程,在网上搜索可以找到很多的解释。这里我用一句话来总结:AOP是能够让我们在不影响原有功能的前提下,为软件横向扩展功能。

那么横向扩展怎么理解呢,我们在WEB项目开发中,通常都遵守三层原则,包括控制层(Controller)->业务层(Service)->数据层(dao),那么从这个结构下来的为纵向,它具体的某一层就是我们所说的横向。我们的AOP就是可以作用于这某一个横向模块当中的所有方法。

我们在来看一下AOP和OOP的区别:AOP是OOP的补充,当我们需要为多个对象引入一个公共行为,比如日志,操作记录等,就需要在每个对象中引用公共行为,这样程序就产生了大量的重复代码,使用AOP可以完美解决这个问题。

接下来介绍一下提到AOP就必须要了解的知识点:

切面:拦截器类,其中会定义切点以及通知

切点:具体拦截的某个业务点。

通知:切面当中的方法,声明通知方法在目标业务层的执行位置,通知类型如下:

  • 前置通知:@Before 在目标业务方法执行之前执行

  • 后置通知:@After 在目标业务方法执行之后执行

  • 返回通知:@AfterReturning 在目标业务方法返回结果之后执行

  • 异常通知:@AfterThrowing 在目标业务方法抛出异常之后

  • 环绕通知:@Around 功能强大,可代替以上四种通知,还可以控制目标业务方法是否执行以及何时执行

2. 代码中实现举例

上面已经大概的介绍了AOP中需要了解的基本知识,也知道了AOP的好处,那怎么在代码中实现呢?给大家举个例子:我们现在有个学校管理系统,已经实现了对老师和学生的增删改,又新来个需求,说是对老师和学生的每次增删改做一个记录,到时候校长可以查看记录的列表。

那么问题来了,怎么样处理是最好的解决办法呢?这里我罗列了三种解决办法,我们来看下他的优缺点。

Java:由浅入深揭开 AOP 实现原理

最简单的就是第一种方法,我们直接在每次的增删改的函数当中直接实现这个记录的方法,这样代码的重复度太高,耦合性太强,不建议使用。

其次就是我们最长使用的,将记录这个方法抽离出来,其他的增删改调用这个记录函数即可,显然代码重复度降低,但是这样的调用还是没有降低耦合性。

这个时候我们想一下AOP的定义,再想想我们的场景,其实我们就是要在不改变原来增删改的方法,给这个系统增加记录的方法,而且作用的也是一个层面的方法。这个时候我们就可以采用AOP来实现了。

我们来看下代码的具体实现:

1,首先我定义了一个自定义注解作为切点

@Target(AnnotationTarget.FUNCTION)  
//注解作用的范围,这里声明为函数
@Order(Ordered.HIGHEST_PRECEDENCE)  
//声明注解的优先级为最高,假设有多个注解,先执行这个
annotation class Hanler(val handler: HandlerType)  
//自定义注解类,HandlerType是一个枚举类型,里面定义的就是学生和老师的增删改操作,在这里就不展示具体内容了

2,接下来就是要定义切面类了

@Aspect   //该注解声明这个类为一个切面类
@Component
class HandlerAspect{@Autowiredprivate lateinit var handlerService: HandlerService@AfterReturning("@annotation(handler)")   //当有函数注释了注解,将会在函数正常返回后在执行我们定义的方法
fun hanler(hanler: Hanler) {handlerService.add(handler.operate.value)   //这里是真正执行记录的方法
}
}

3,最后就是我们本来的业务方法了

/**
* 删除学生方法
*/
@Handler(operate= Handler.STUDENT_DELETE)   //当执行到删除学生方法时,切面类就会起作用了,当学生正常删除后就会执行记录方法,我们就可以看到记录方法生成的数据
fun delete(id:String) {studentService.delete(id)
}

3. AOP实现原理

我们现在了解了代码中如何实现,那么AOP实现的原理是什么呢?之前看了一个博客说到,提到AOP大家都知道他的实现原理是动态代理,显然我之前就是不知道的,哈哈,但是相信阅读文章的你们一定是知道的。

讲到动态代理就不得不说代理模式了,代理模式的定义:给某一个对象提供一个代理,并由代理对象控制对原对象的引用。

代理模式包含如下角色:

  • subject:抽象主题角色,是一个接口。该接口是对象和它的代理共用的接口;

  • RealSubject:真实主题角色,是实现抽象主题接口的类;

  • Proxy:代理角色,内部含有对真实对象RealSubject的引用,从而可以操作真实对象。

代理对象提供与真实对象相同的接口,以便代替真实对象。同时,代理对象可以在执行真实对象操作时,附加其他的操作,相当于对真实对象进行封装。如下图所示:

Java:由浅入深揭开 AOP 实现原理

Java:由浅入深揭开 AOP 实现原理

那么代理又分为静态代理和动态代理,这里写两个小的demo,动态代理采用的就是JDK代理。举个例子就是现在一个班上的学生需要交作业,现在由班长代理交作业,那么班长就是代理,学生就是被代理的对象。

3.1 静态代理

首先,我们创建一个Person接口。这个接口就是学生(被代理类),和班长(代理类)的公共接口,他们都有交作业的行为。这样,学生交作业就可以让班长来代理执行。

/*** 创建person接口*/
public interface Person {//交作业void giveTask();
}

Student类实现Person接口,Student可以具体实施交作业这个行为。

public class Student implements Person {private String name;public Student(String name) {this.name = name;}public void giveTask() {System.out.println(name + "交语文作业");}
}

StudentsProxy类,这个类也实现了Person接口,但是还另外持有一个学生类对象,那么他可以代理学生类对象执行交作业的行为。

/*** 学生代理类,也实现了Person接口,保存一个学生实体,这样就可以代理学生产生行为*/
public class StudentsProxy implements Person{//被代理的学生Student stu;public StudentsProxy(Person stu) {// 只代理学生对象if(stu.getClass() == Student.class) {this.stu = (Student)stu;}}//代理交作业,调用被代理学生的交作业的行为public void giveTask() {stu.giveTask();}
}

下面测试一下,看代理模式如何使用:

public class StaticProxyTest {public static void main(String[] args) {//被代理的学生林浅,他的作业上交有代理对象monitor完成Person linqian = new Student("林浅");//生成代理对象,并将林浅传给代理对象Person monitor = new StudentsProxy(linqian);//班长代理交作业monitor.giveTask();}
}

运行结果:

Java:由浅入深揭开 AOP 实现原理

这里并没有直接通过林浅(被代理对象)来执行交作业的行为,而是通过班长(代理对象)来代理执行了。这就是代理模式。

代理模式就是在访问实际对象时引入一定程度的间接性,这里的间接性就是指不直接调用实际对象的方法,那么我们在代理过程中就可以加上一些其他用途。

比如班长在帮林浅交作业的时候想告诉老师最近林浅的进步很大,就可以轻松的通过代理模式办到。在代理类的交作业之前加入方法即可。这个优点就可以运用在spring中的AOP,我们能在一个切点之前执行一些操作,在一个切点之后执行一些操作,这个切点就是一个个方法。这些方法所在类肯定就是被代理了,在代理过程中切入了一些其他操作。

3.2 动态代理

动态代理和静态代理的区别是,静态代理的的代理类是我们自己定义好的,在程序运行之前就已经变异完成,但是动态代理的代理类是在程序运行时创建的。

相比于静态代理,动态代理的优势在于可以很方便的对代理类的函数进行统一的处理,而不用修改每个代理类中的方法。比如我们想在每个代理方法之前都加一个处理方法,我们上面的例子中只有一个代理方法,如果还有很多的代理方法,就太麻烦了,我们来看下动态代理是怎么去实现的。

首先还是定义一个Person接口:

/*** 创建person接口*/
public interface Person {//交作业void giveTask();
}

接下来是创建需要被代理的实际类,也就是学生类:

public class Student implements Person {private String name;public Student(String name) {this.name = name;}public void giveTask() {System.out.println(name + "交语文作业");}
}

创建StuInvocationHandler类,实现InvocationHandler接口,这个类中持有一个被代理对象的实例target。InvocationHandler中有一个invoke方法,所有执行代理对象的方法都会被替换成执行invoke方法。

public class StuInvocationHandler<T> implements InvocationHandler {//invocationHandler持有的被代理对象T target;public StuInvocationHandler(T target) {this.target = target;}/*** proxy:代表动态代理对象* method:代表正在执行的方法* args:代表调用目标方法时传入的实参*/public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {System.out.println("代理执行" +method.getName() + "方法");Object result = method.invoke(target, args);return result;}
}

那么接下来我们就可以具体的创建代理对象了。

/*** 代理类*/
public class ProxyTest {public static void main(String[] args) {//创建一个实例对象,这个对象是被代理的对象Person linqian = new Student("林浅");//创建一个与代理对象相关联的InvocationHandlerInvocationHandler stuHandler = new StuInvocationHandler<Person>(linqian);//创建一个代理对象stuProxy来代理linqian,代理对象的每个执行方法都会替换执行Invocation中的invoke方法Person stuProxy = (Person) Proxy.newProxyInstance(Person.class.getClassLoader(), new Class<?>[]{Person.class}, stuHandler);//代理执行交作业的方法stuProxy.giveTask();}
}

我们执行代理测试类,首先我们创建了一个需要被代理的学生林浅,将林浅传入stuHandler中,我们在创建代理对象stuProxy时,将stuHandler作为参数,那么所有执行代理对象的方法都会被替换成执行invoke方法,也就是说,最后执行的是StuInvocationHandler中的invoke方法。所以在看到下面的运行结果也就理所当然了。

Java:由浅入深揭开 AOP 实现原理

那么到这里问题就来了,为什么代理对象执行的方法都会通过InvocationHandler中的invoke方法来执行,带着这个问题,我们需要看一下动态代理的源码,对他进行简单的分析。更多:动态代理解析

上面我们使用Proxy类的newProxyInstance方法创建了一个动态代理对象,看一下他的源码:

public static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler h)throws IllegalArgumentException{Objects.requireNonNull(h);final Class<?>[] intfs = interfaces.clone();final SecurityManager sm = System.getSecurityManager();if (sm != null) {checkProxyAccess(Reflection.getCallerClass(), loader, intfs);}/** Look up or generate the designated proxy class.*/Class<?> cl = getProxyClass0(loader, intfs);/** Invoke its constructor with the designated invocation handler.*/try {if (sm != null) {checkNewProxyPermission(Reflection.getCallerClass(), cl);}final Constructor<?> cons = cl.getConstructor(constructorParams);final InvocationHandler ih = h;if (!Modifier.isPublic(cl.getModifiers())) {AccessController.doPrivileged(new PrivilegedAction<Void>() {public Void run() {cons.setAccessible(true);return null;}});}return cons.newInstance(new Object[]{h});} catch (IllegalAccessException|InstantiationException e) {throw new InternalError(e.toString(), e);} catch (InvocationTargetException e) {Throwable t = e.getCause();if (t instanceof RuntimeException) {throw (RuntimeException) t;} else {throw new InternalError(t.toString(), t);}} catch (NoSuchMethodException e) {throw new InternalError(e.toString(), e);}}

然后,我们需要重点关注Class<?> cl = getProxyClass0(loader, intfs)这句代码,这里产生了代理类,这个类就是动态代理的关键,由于是动态生成的类文件,我们将这个类文件打印到文件中。

       byte[] classFile = ProxyGenerator.generateProxyClass("$Proxy0", Student.class.getInterfaces());String path = "/Users/mapei/Desktop/okay/65707.class";try{FileOutputStream fos = new FileOutputStream(path);fos.write(classFile);fos.flush();System.out.println("代理类class文件写入成功");}catch (Exception e) {System.out.println("写文件错误");}

对这个class文件进行反编译,我们看看jdk为我们生成了什么样的内容:

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.lang.reflect.UndeclaredThrowableException;
import proxy.Person;public final class $Proxy0 extends Proxy implements Person
{private static Method m1;private static Method m2;private static Method m3;private static Method m0;/***注意这里是生成代理类的构造方法,方法参数为InvocationHandler类型,看到这,是不是就有点明白*为何代理对象调用方法都是执行InvocationHandler中的invoke方法,而InvocationHandler又持有一个*被代理对象的实例,就可以去调用真正的对象实例。*/public $Proxy0(InvocationHandler paramInvocationHandler)throws {super(paramInvocationHandler);}//这个静态块本来是在最后的,我把它拿到前面来,方便描述static{try{//看看这儿静态块儿里面的住giveTask通过反射得到的名字m3,其他的先不管m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { Class.forName("java.lang.Object") });m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);m3 = Class.forName("proxy.Person").getMethod("giveTask", new Class[0]);m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);return;}catch (NoSuchMethodException localNoSuchMethodException){throw new NoSuchMethodError(localNoSuchMethodException.getMessage());}catch (ClassNotFoundException localClassNotFoundException){throw new NoClassDefFoundError(localClassNotFoundException.getMessage());}}/*** *这里调用代理对象的giveMoney方法,直接就调用了InvocationHandler中的invoke方法,并把m3传了进去。*this.h.invoke(this, m3, null);我们可以对将InvocationHandler看做一个中介类,中介类持有一个被代理对象,在invoke方法中调用了被代理对象的相应方法。通过聚合方式持有被代理对象的引用,把外部对invoke的调用最终都转为对被代理对象的调用。*/public final void giveTask()throws {try{this.h.invoke(this, m3, null);return;}catch (Error|RuntimeException localError){throw localError;}catch (Throwable localThrowable){throw new UndeclaredThrowableException(localThrowable);}}}

看完了动态代理的源码,我们接下来就要看一下Spring中AOP实现的源码是怎样的?

4. 部分源码解析

aop创建代理的源码分析

1,看一下bean如何被包装为proxy

           protected Object createProxy(Class<?> beanClass, String beanName, Object[] specificInterceptors, TargetSource targetSource) {if (this.beanFactory instanceof ConfigurableListableBeanFactory) {AutoProxyUtils.exposeTargetClass((ConfigurableListableBeanFactory) this.beanFactory, beanName, beanClass);}// 1.创建proxyFactory,proxy的生产主要就是在proxyFactory做的ProxyFactory proxyFactory = new ProxyFactory();proxyFactory.copyFrom(this);if (!proxyFactory.isProxyTargetClass()) {if (shouldProxyTargetClass(beanClass, beanName)) {proxyFactory.setProxyTargetClass(true);}else {evaluateProxyInterfaces(beanClass, proxyFactory);}}// 2.将当前bean适合的advice,重新封装下,封装为Advisor类,然后添加到ProxyFactory中Advisor[] advisors = buildAdvisors(beanName, specificInterceptors);for (Advisor advisor : advisors) {proxyFactory.addAdvisor(advisor);}proxyFactory.setTargetSource(targetSource);customizeProxyFactory(proxyFactory);proxyFactory.setFrozen(this.freezeProxy);if (advisorsPreFiltered()) {proxyFactory.setPreFiltered(true);}// 3.调用getProxy获取bean对应的proxyreturn proxyFactory.getProxy(getProxyClassLoader());}

2,创建何种类型的Proxy?JDKProxy还是CGLIBProxy?

    public Object getProxy(ClassLoader classLoader) {return createAopProxy().getProxy(classLoader);}// createAopProxy()方法就是决定究竟创建何种类型的proxyprotected final synchronized AopProxy createAopProxy() {if (!this.active) {activate();}// 关键方法createAopProxy()return getAopProxyFactory().createAopProxy(this);}// createAopProxy()public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException {// 1.config.isOptimize()是否使用优化的代理策略,目前使用与CGLIB// config.isProxyTargetClass() 是否目标类本身被代理而不是目标类的接口// hasNoUserSuppliedProxyInterfaces()是否存在代理接口if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) {Class<?> targetClass = config.getTargetClass();if (targetClass == null) {throw new AopConfigException("TargetSource cannot determine target class: " +"Either an interface or a target is required for proxy creation.");}// 2.如果目标类是接口类(目标对象实现了接口),则直接使用JDKproxyif (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) {return new JdkDynamicAopProxy(config);}// 3.其他情况则使用CGLIBproxyreturn new ObjenesisCglibAopProxy(config);}else {return new JdkDynamicAopProxy(config);}}

3,getProxy()方法

   final class JdkDynamicAopProxy implements AopProxy, InvocationHandler, Serializable// JdkDynamicAopProxy类结构,由此可知,其实现了InvocationHandler,则必定有invoke方法,来被调用,也就是用户调用bean相关方法时,此invoke()被真正调用// getProxy()public Object getProxy(ClassLoader classLoader) {if (logger.isDebugEnabled()) {logger.debug("Creating JDK dynamic proxy: target source is " + this.advised.getTargetSource());}Class<?>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised, true);findDefinedEqualsAndHashCodeMethods(proxiedInterfaces);// JDK proxy 动态代理的标准用法return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this);}

4,invoke()方法法

    //使用了JDK动态代理模式,真正的方法执行在invoke()方法里,看到这里在想一下上面动态代理的例子,是不是就完全明白Spring源码实现动态代理的原理了。public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {MethodInvocation invocation;Object oldProxy = null;boolean setProxyContext = false;TargetSource targetSource = this.advised.targetSource;Class<?> targetClass = null;Object target = null;try {// 1.以下的几个判断,主要是为了判断method是否为equals、hashCode等Object的方法if (!this.equalsDefined && AopUtils.isEqualsMethod(method)) {// The target does not implement the equals(Object) method itself.return equals(args[0]);}else if (!this.hashCodeDefined && AopUtils.isHashCodeMethod(method)) {// The target does not implement the hashCode() method itself.return hashCode();}else if (method.getDeclaringClass() == DecoratingProxy.class) {// There is only getDecoratedClass() declared -> dispatch to proxy config.return AopProxyUtils.ultimateTargetClass(this.advised);}else if (!this.advised.opaque && method.getDeclaringClass().isInterface() &&method.getDeclaringClass().isAssignableFrom(Advised.class)) {// Service invocations on ProxyConfig with the proxy config...return AopUtils.invokeJoinpointUsingReflection(this.advised, method, args);}Object retVal;if (this.advised.exposeProxy) {// Make invocation available if necessary.oldProxy = AopContext.setCurrentProxy(proxy);setProxyContext = true;}// May be null. Get as late as possible to minimize the time we "own" the target,// in case it comes from a pool.target = targetSource.getTarget();if (target != null) {targetClass = target.getClass();}// 2.获取当前bean被拦截方法链表List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);// 3.如果为空,则直接调用target的methodif (chain.isEmpty()) {Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);}// 4.不为空,则逐一调用chain中的每一个拦截方法的proceed,这里的一系列执行的原因以及proceed执行的内容,我 在这里就不详细讲了,大家感兴趣可以自己去研读哈else {// We need to create a method invocation...invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);// Proceed to the joinpoint through the interceptor chain.retVal = invocation.proceed();}...return retVal;}}}

那么到了这里,我要讲的内容就差不多结束了,如果有什么不对的,或者有什么疑惑,欢迎大家指点!


http://chatgpt.dhexx.cn/article/7mTP11XZ.shtml

相关文章

Spring的AOP原理

为什么80%的码农都做不了架构师&#xff1f;>>> 一、什么是 AOP AOP&#xff08;Aspect-OrientedProgramming&#xff0c;面向切面编程&#xff09;&#xff0c;可以说是OOP&#xff08;Object-Oriented Programing&#xff0c;面向对象编程&#xff09;的补充和完…

利用C语言实现动态数组

数组存在的问题&#xff1a;如果我们定义一个数组去存储数据&#xff0c;需要提前定义数组的个数&#xff0c;或者数组根据第一次存储的元素个数自动确定数组的大小&#xff0c;但是我们如果想对数组进行元素插入只能重新定义一个新数组&#xff0c;或者预定义一个空间非常大的…

C++数组之动态数组

目录 1.摘要 2.动态数组内存分配 1一维数组 2多维数组&#xff08;以2维为例&#xff09; 3.动态数组初始化 1默认初始化 2.自定义初始化 4.动态数组释放 5.例子 Gradebook类的实现 6.参考文章 1.摘要 数组是一种顺序存储的数据结构&#xff0c;在定义数组时&…

C++中如何定义动态数组

首先&#xff1a;为什么需要动态定义数组呢&#xff1f; 这是因为&#xff0c;很多情况下&#xff0c;在预编译过程阶段&#xff0c;数组的长度是不能预先知道的&#xff0c;必须在程序运行时动态的给出 但是问题是&#xff0c;c要求定义数组时&#xff0c;必须明确给定数组…

c++ 动态数组

动态数组 相关数组知识连接 数组详解 多维数组 在之前的文章中&#xff0c;讲解了数组的相关知识&#xff0c;那一种数组&#xff08;数组相关连接&#xff1a;https://blog.csdn.net/m0_62870588/article/details/123787052&#xff09;又称是静态数组&#xff0c;因为它的大小…

C语言中动态分配数组

很多人在编写C语言代码的时候很少使用动态数组&#xff0c;不管什么情况下通通使用静态数组的方法来解决&#xff0c;在当初学习C语言的时候我就是一个典型的例子&#xff0c;但是现在发现这是一个相当不好的习惯&#xff0c;甚至可能导致编写的程序出现一些致命的错误。尤其对…

C语言学习笔记:动态数组

动态数组 数组是C语言中的很重要的一种构造类型&#xff0c;最初我们学习的都是静态数组&#xff0c;但是&#xff0c;静态数组有着自己难以改变的缺点——数组长度固定。 一般在静态数组定义后&#xff0c;系统就会为其分配对应长度的连续的专有内存空间&#xff0c;可是&am…

C语言如何实现动态数组?

提出问题 请问在c语言里如何实现动态大小的数组啊&#xff0c;比如说int a[N];&#xff0c;这里N的值可以在程序中定&#xff0c;或者有什么方法可以实现类似的功能&#xff1f;总之只要在编译时不用制定数组大小就行。 分析问题 嵌入式系统的内存是宝贵的&#xff0c;内存是否…

C的动态数组的详细知识(网上收集到的大量详细知识以及个人理解的汇总)

动态数组是指在声明时没有确定数组大小的数组&#xff0c;即忽略圆括号中的下标&#xff1b;当要用它时&#xff0c;可随时用ReDim语句重新指出数组的大小。使用动态数组的优点是可以根据用户需要&#xff0c;有效利用存储空间。 可以了解动态数组的详细定义 一.C版本动态数组…

动态数组C语言实现详解

目录 0、前言 一、动态数组数据结构 二、动态数组增删改查函数声明 三、数组创建 1、头部动态创建 2、头部静态创建 四、元素添加 五、元素删除 1、根据元素值删除 2、根据元素位置删除 六、元素修改 七、元素查找 八、数组清空 九、数组销毁 十、验证程序 0、前…

C语言实现 动态数组 处理任意类型数据

引言&#xff1a;动态数组在C/C、Java、Python等语言中应用广泛&#xff0c;高级语言一般通过调用类或接口等可以快捷使用&#xff0c;C语言实现动态数组需要手动构造&#xff0c;以下为实现过程。 1 结构体构造动态数组 typedef struct Array {void **p; //维护在堆区…

C语言创建动态数组

C语言创建动态数组 1.编写步骤 1. 添加所需头文件 stdlib.h 该头文件下包含的与分配存储区相关的函数如下&#xff1a; void* malloc (size_t size);//从堆中分配size字节的存储空间 void* calloc (size_t num, size_t size);//分配数组并将数组零初始化。为 num 个元素的数…

在OpenCV里实现开运算

前面学习腐蚀和膨胀算法,并且深刻地认识到它们的特性以及作用。如果由这两种组合出来的运算又有什么样的不同呢?比如一个图像先腐蚀后膨胀的操作,会有什么结果呢?因为腐蚀是把图片白色变小,膨胀又是把图片白色变大,是否会保持原图不变呢?带着这些问题来研究一下先腐蚀后…

OpenCV python 形态学 圆形开运算

处理流程 # -*- coding: utf-8 -*- # note : 形态学 开运算 圆形内核 处理 # --------------------------------import cv2 as cv import numpy as npdef opening_circle(img_bin, kernel_size10):# 形态学kernel np.zeros((kernel_size, kernel_size), np.uint8)center_…

腐蚀、膨胀、开运算、闭运算

一、腐蚀、膨胀、开运算、闭运算 腐蚀&#xff1a;图像中的高亮部分进行膨胀 膨胀&#xff1a;原图中的高亮部分被腐蚀&#xff0c;类似于领域被蚕食 开运算&#xff1a;先腐蚀再膨胀&#xff0c;可以去掉目标外孤立的点 闭运算&#xff1a;先膨胀再腐蚀&#xff0c;可以去掉目…

【youcans 的 OpenCV 例程200篇】137. 灰度开运算和灰度闭运算原理

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列&#xff0c;持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列&#xff0c;持续更新中 【youcans 的 OpenCV 例程200篇】137. 灰度开运算和灰度闭运算 5. 灰度级形态学 灰度级形态学将形态学操作从二值图像扩展到灰度图…

开闭运算

开运算和闭运算是将腐蚀和膨胀按照一定的次序进行处理。但这两者并不是可逆的&#xff0c;即先开后闭并不能得到原来的图像。 开运算 开运算是先腐蚀后膨胀&#xff0c;其作用是&#xff1a;分离物体&#xff0c;消除小区域。特点&#xff1a;消除噪点&#xff0c;去除小的干扰…

图像的形态学开操作(开运算)和闭操作(闭运算)的概念和作用,并用OpenCV的函数morphologyEx()实现对图像的开闭操作

大家看这篇博文前可以先看一看下面这篇博文&#xff0c;下面这篇博文是这篇博文的基础&#xff1a; 详解图像形态学操作之图形的腐蚀和膨胀的概念和运算过程,并利用OpenCV的函数erode()和函数dilate()对图像进行腐蚀和膨胀操作 图像形态学腐蚀可以将细小的噪声区域去除&#x…

OpenCV-Python图像运算变换处理:开运算和闭运算以及不同核矩阵的影响分析

☞ ░ 前往老猿Python博客 https://blog.csdn.net/LaoYuanPython ░ 一、引言 在《OpenCV-Python图像处理&#xff1a;腐蚀和膨胀原理及erode、dilate函数介绍 https://blog.csdn.net/LaoYuanPython/article/details/109441709》等系列博文中老猿详细介绍了腐蚀和膨胀的原理、…

灰度级形态学 - 灰度开运算和灰度闭运算

目录 1. 介绍 2. code 1. 介绍 灰度级的开运算和闭运算和二值图像的处理一样&#xff0c;只不过一个作用于灰度图&#xff0c;一个作用于二值图像 灰度级的开运算公式为&#xff1a; 先对图像做腐蚀&#xff0c;然后对腐蚀的结果做膨胀运算 灰度级的闭运算公式为&#xff…