回归预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM、BiLSTM多输入单输出回归预测

article/2025/9/18 15:24:24

回归预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM、BiLSTM多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于QPSO-BiLSTM、PSO-BiLSTM、BiLSTM多输入单输出回归预测
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

1
2

3
4
5
6
7
8
9

11
12

基本描述

1.Matlab实现QPSO-BiLSTM、PSO-BiLSTM、BiLSTM神经网络时间序列预测;
2.输入数据为多输入单输出数据;
3.运行环境Matlab2020及以上,依次运行Main1BiLSTMNN、Main2PSOBiLSTMNN、Main3QPSOBiLSTMNN、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集,输入多个特征,输出单个变量;
BiLSTM(双向长短时记忆模型)与粒子群算法优化后的BiLSTM(PSOBiLSTM)以及量子粒子群算法优化后的BiLSTM(QPSOBiLSTM)对比实验,可用于风电、光伏等负荷预测,数据为多输入单输出预测,最后一列输出,PSO、QPSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。
4.命令窗口输出MAE、MAPE、RMSE和R2。

程序设计

  • 完整程序和数据下载:私信博主回复QPSO-BiLSTM、PSO-BiLSTM、BiLSTM多输入单输出回归预测。
for i=1:PopNum%随机初始化速度,随机初始化位置for j=1:dimif j==dim% % 隐含层节点与训练次数是整数 学习率是浮点型pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsepop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endend
end% calculate the fitness_value of Pop
pbest = pop;
gbest = zeros(1,dim);
data1 = zeros(Maxstep,PopNum,dim);
data2 = zeros(Maxstep,PopNum);
for i = 1:PopNumfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);f_pbest(i) = fit(i);
end
g = min(find(f_pbest == min(f_pbest(1:PopNum))));
gbest = pbest(g,:);
f_gbest = f_pbest(g);%-------- in the loop -------------
for step = 1:Maxstepmbest =sum(pbest(:))/PopNum;% linear weigh factorb = 1-step/Maxstep*0.5;data1(step,:,:) = pop;data2(step,:) = fit;for i = 1:PopNuma = rand(1,dim);u = rand(1,dim);p = a.*pbest(i,:)+(1-a).*gbest;pop(i,:) = p + b*abs(mbest-pop(i,:)).*...log(1./u).*(1-2*(u >= 0.5));% boundary detectionfor j=1:dimif j ==dimif pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %endelsepop(i,j)=round(pop(i,j));if pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);if fit(i) < f_pbest(i)pbest(i,:) = pop(i,:);f_pbest(i) = fit(i);endif f_pbest(i) < f_gbestgbest = pbest(i,:);f_gbest = f_pbest(i);endendtrace(step)=f_gbest;step,f_gbest,gbestresult(step,:)=gbest;
end
or i=1:N%随机初始化速度,随机初始化位置for j=1:Dif j==D% % 隐含层节点与训练次数是整数 学习率是浮点型x(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendv(i,:)=rand(1,D);
end%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:Np(i)=fitness(x(i,:),p_train,t_train,p_test,t_test);y(i,:)=x(i,:);end
[fg,index]=min(p);
pg = x(index,:);             %Pg为全局最优%------进入主要循环,按照公式依次迭代------------for t=1:Mfor i=1:Nv(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);for j=1:Dif j ~=Dx(i,j)=round(x(i,j));endif x(i,j)>xmax(j) | x(i,j)<xmin(j)if j==Dx(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendtemp=fitness(x(i,:),p_train,t_train,p_test,t_test);if temp<p(i)p(i)=temp;y(i,:)=x(i,:);endif p(i)<fgpg=y(i,:);fg=p(i);endendtrace(t)=fg;result(t,:)=pg;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501


http://chatgpt.dhexx.cn/article/2sg5AJmm.shtml

相关文章

云模型量子粒子群算法

云模型量子粒子群算法 量子粒子群推导过程&#xff1a; 量子粒子群算法(Quantum-behaved Particle Swarm Optimization&#xff0c;QPSO)具有进化方程简单、控制参数少、收敛速度快、运算量少等特点。QPSO从量子动力学运动方程出发&#xff0c;通过蒙特卡洛逆变换法定格某时刻…

【配电网重构】基于粒子群算法求解配电网重构问题附matlab代码

1 内容介绍 随着大规模,跨区域的配电网不断发展,对配电网运行的经济性和可靠性要求越来越高,在配电网发生大范围停电事故后,需要对配电网的拓扑结构进行重新组合,从而达到恢复供电的目的,这个重新组合配电网拓扑结构的过程即为配电网恢复重构.配电网恢复重构是一个多目标非线性…

回归预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU多变量回归预测

回归预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU多变量回归预测 目录 回归预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU多变量回归预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-GRU、PSO-GRU和GRU门控循环单元多变量回归预测&#xff1b; 2.输…

回归预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU多变量回归预测

回归预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU多变量回归预测 目录 回归预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU多变量回归预测效果一览基本描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-BiGRU、PSO-BiGRU和BiGRU双向门控循环单元多变量回归…

QPSO---收缩扩张系数的选择方案(未完待续)

一、理论基础 平均最优位置&#xff1a; 其中,P代表第i个粒子的最优位置&#xff0c;即局部最优位置&#xff0c;mbest为平均最优位置。对于多维粒子而言&#xff0c;每一维上的最优位置等于全部粒子在该维度上的平均值。 其中小写的p代表每个粒子的局部吸引子&#xff0c;它的…

组合预测模型 | 基于QPSO-LSTM、PSO-LSTM、LSTM单输入单输出时序预测(Matlab程序)

组合预测模型 | 基于QPSO-LSTM、PSO-LSTM、LSTM单输入单输出时序预测(Matlab程序) 目录 组合预测模型 | 基于QPSO-LSTM、PSO-LSTM、LSTM单输入单输出时序预测(Matlab程序)预测结果基本介绍程序设计参考资料预测结果

时序预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU时间序列预测

时序预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-GRU、PSO-GRU、GRU时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现基于QPSO-GRU、PSO-GRU、GRU时间序列预测。 1.Matlab实现QPSO-GRU、PSO-GRUG…

时序预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM时间序列预测

时序预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM时间序列预测 目录 时序预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM时间序列预测效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM时间序列预测。 1.Matlab实现QPSO-LSTM…

回归预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM多输入单输出回归预测

回归预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM多输入单输出回归预测 目录 回归预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM多输入单输出回归预测效果一览基本描述模型描述程序设计参考资料 效果一览 基本描述 1.Matlab实现QPSO-LSTM、PSO-LSTM和LSTM神经网络时间序…

QPSO Algorithm

QPSO Algorithm C#语言.NetFramwork4.6.1平台实现&#xff08;需了解QPSO算法原理&#xff0c;可参考清华大学孙俊教授编写的教材《量子行为粒子群优化原理及其应用》&#xff09; using System; using System.Collections.Generic; using System.Linq; using System.Text; u…

微信小程序使用ECharts的示例详解

目录 安装 ECharts 组件使用 ECharts 组件图表延迟加载 echarts-for-weixin 是 ECharts 官方维护的一个开源项目&#xff0c;提供了一个微信小程序组件&#xff08;Component&#xff09;&#xff0c;我们可以通过这个组件在微信小程序中使用 ECharts 绘制图表。 echarts-fo…

微信小程序案例---本地生活

文章目录 首页效果以及实现步骤接口地址新建项目并梳理项目结构配置导航栏效果配置 tabBar 效果实现轮播图效果实现九宫格效果实现图片布局 本地生活&#xff08;列表页面&#xff09;演示页面效果以及主要功能列表页面的 API 接口页面导航并传参获取并渲染列表数据上拉触底时加…

微信小程序--操作示例2

微信小程序--商城首页 我们首先有一个商城的接口 调用商城中首页所需要的一些数据 例如&#xff1a; onLoad: function () {var that this;//请求服务器时间戳wx.request({url: http://www.tp.com/index.php?mApi&cBase&agetServerTime, //请求地址success: fu…

微信小程序官方示例

微信小程序官方示例 下载微信客户端版本号&#xff1a;6.3.27 及以上&#xff0c;只有小程序绑定的开发者有权限扫码体验。下载源码 版本20161010

什么是云开发?小程序实例超详细演示~

学习视频&#xff1a; 八分钟读懂云开发_哔哩哔哩_bilibili小姐姐带你30分钟创建并上线小程序项目【云开发实战】_哔哩哔哩_bilibili 参考资料&#xff1a; 微信开放文档 (qq.com)云开发_百度百科 (baidu.com) 推荐阅读&#xff1a; 云原生推动全云开发与实践 - 知乎 (zhihu.co…

微信小程序入门教程+案例demo

微信小程序入门教程案例demo 尊重原创&#xff0c;转载请注明出处&#xff1a;原文查看惊喜更多 http://blog.csdn.net/qq137722697 首先摆在好姿态&#xff0c;——微信小程序开发也就那么回事。你只需要一点点css&#xff08;真的只要一点点&#xff09;的基础就可以了。 认清…

微信小程序开发 | API应用案例(下)

API应用案例&#xff08;下&#xff09; 6.1【案例5】模拟时钟6.1.1 案例分析6.1.2 前导知识6.1.3 钟表页面布局6.1.4 钟表页面绘制 6.2【案例6】罗盘动画6.2.1 案例分析6.2.2 前导知识6.2.3 设计罗盘页面布局6.2.4 手指触摸旋转罗盘6.2.5 单击按钮操作罗盘 6.3【案例7】文件上…

使用微信小程序开发弹出框应用实例详解

1 2 3 4 5 view class"container" class"zn-uploadimg"> <button type"primary"bindtap"showok">消息提示框</button> <button type"primary"bindtap"modalcnt">模态弹窗</button&g…

小程序代码示例整理

以下是分享了一部分小程序的代码示例&#xff0c;希望能够帮助到你们&#xff0c;抓紧收藏吧 微信小程序知乎日报 https://github.com/myronliu347/wechat-app-zhihudaily 微信小程序购物车案例 https://github.com/SeptemberMaples/wechat-weapp-demo 微信小程序–聊天室…

微信小程序开发实例

一、注册小程序账号 1.进入微信公众平台&#xff08;https://mp.weixin.qq.com/&#xff09;&#xff0c;注册小程序账号&#xff0c;根据提示填写对应的信息即可。2.注册成功后进入首页&#xff0c;在 小程序发布流程->小程序开发与管理->配置服务器中&#xff0c;点击…