卷积神经网络有哪些算法,卷积神经网络算法实现

article/2025/10/7 7:59:26

卷积神经网络通俗理解

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑AI爱发猫

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

卷积神经网络工作原理直观的解释?

其实道理很简单,因为卷积运算,从频域角度看,是频谱相乘所以图像跟卷积核做卷积时,两者频谱不重叠的部分相乘,自然是0,那图像这部分频率的信息就被卷积核过滤了。

而图像,本质上就是二维离散的信号,像素点值的大小代表该位置的振幅,所以图像包含了一系列频率的特征。比如图像边缘部分,像素值差别大,属于高频信号,背景部分,像素值差别小,是低频信号。

所以如果卷积核具有『高通』性质,就能起到提取图像边缘的作用,低通则有模糊的效果。所以,卷积神经网络的牛逼之处在于通过卷积层的不同卷积核,提取图像不同频段的特征;以及通过池化层,提取不同粒度的特征。

卷积神经网络cnn究竟是怎样一步一步工作的

用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散。

对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的压制)之后“深度”的话,就会需要对池化后的结果继续用不同的卷积核进行“卷积+relu”再池化的工作。

最后得到的实质是一个图片的深度特征,然后实际分类需要另外加一层,一般是softmax。

(也就是说如果对一个现成的已经训练完毕的卷积神经网络模型,只保留除了最后一层之外的部分,然后输入训练图片,把网络的输出重新送入一个多类的SVM再训练,最后也能得到差不多的结果,取决于svm的参数。)

什么是卷积神经网络?为什么它们很重要

卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。

[1]  它包括卷积层(alternatingconvolutionallayer)和池层(poolinglayer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeuralNetworks-简称CNN)。

现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。

其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

 


http://chatgpt.dhexx.cn/article/1huFlLFH.shtml

相关文章

神经网络算法---手写数字体识别

文章目录 神经网络的背景多层向前神经网络设计神经网络结构交叉验方法 Backpropagation 算法激活函数手写数字例子 神经网络的背景 1,1980年backpropagation是神经网络算法最著名的算法,以人脑中的神经网络为启发。 多层向前神经网络 backpropagation…

遗传算法和神经网络算法区别与联系

1、关于遗传算法,模糊数学,神经网络三种数学的区别和联系 遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的…

卷积神经网络算法三大类,卷积神经网络算法实现

卷积神经网络算法是什么? 一维构筑、二维构筑、全卷积构筑。 卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习&a…

神经网络的基本原理,神经网络算法三大类

1、神经网络是什么? 生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。 人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神…

神经网络的算法有哪些,神经网络算法包括哪些

卷积神经网络算法是什么? 一维构筑、二维构筑、全卷积构筑。 卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习&a…

反馈神经网络算法

典型的卷积神经网络,开始阶段都是卷积层以及池化层的相互交替使用,之后采用全连接层将卷积和池化后的结果特征全部提取进行概率计算处理。 在具体的误差反馈和权重更新的处理上,不论是全连接层的更新还是卷积层的更新,使用的都是经…

神经网络算法实例说明,简单神经网络算法原理

神经网络算法实例说明有哪些? 在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。 纵观当代新兴科学技术的发展历史&…

算法评价与神经网络算法

前言 随着大数据和信息传输技术的兴起、人们的数据处理工作指数型增长,传统的编程方法和数学模型不再适用于这样大数据量、高噪音的工作,神经网络的使用就变得愈加广泛。作为传统机器学习的一个分支,神经网络实现了更高层次的自动化。对于多…

神经网络算法可以用来干什么

神经网络算法可以解决的问题有哪些 人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特…

Matlab实现神经网络算法

线性关系可以说是最简单的关系,但在大多数实际问题求解中,线性关系往往不能体现事物之间的复杂关系。而神经网络算法具有非线性关系的逼近能力。在以往所学的算法中,往往是通过得到一个f(x)函数来描述y和x之间的关系的,但神经网络…

神经网络算法的基本原理,神经网络算法通俗解释

神经网络算法原理 4.2.1概述人工神经网络的研究与计算机的研究几乎是同步发展的。 1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量…

神经网络算法的基本原理,神经网络算法都有哪些

神经网络算法的三大类分别是? 神经网络算法的三大类分别是:1、前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变…

神经网络算法介绍

引言 人工神经网络(Artificial Neural Networks,ANN)最早起源于1943年,受“脑神经元学说”的启发,心理学家WMcculloch和数理逻辑学家WPitts首次提出基于神经元的数学模型,后来经过无数人的改进和完善&…

深度神经网络算法有哪些,最简单的神经网络算法

常见的深度学习算法主要有哪些? 深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。 卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度…

神经网络算法基本原理及其实现

目录 背景知识 人工神经元模型 激活函数 网络结构 工作状态 学习方式 BP算法原理 算法实现(MATLAB) 背景知识 在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂 什么是人工神经…

神经网络算法介绍(Nerual NetWorks)

神经网络是所谓深度学习的一个基础,也是必备的知识点,他是以人脑中的神经网络作为启发,最著名的算法就是backpropagation算法,这里就简单的整理一下神经网络相关参数,和计算方法。 一、多层向前神经网络(M…

神经网络算法

参考 神经网络算法 - 云社区 - 腾讯云 目录 1、神经元模型 2、感知机与多层网络 3、误差逆传播算法 4、全局最小与局部最小 5、其他神经网络 1、RBF网络 2、ART网络 3、SOM网络 4、级联相关 5、Elman网络 6、Boltzmann机 6、深度学习 1、神经元模型 神经网络(neu…

人工智能学习——神经网络(matlab+python实现)

人工智能学习——神经网络 文章目录 人工智能学习——神经网络前言一、神经网络理论知识1.人工神经网络的概念2.神经元的概念3.MP神经元模型4.常见的激活函数5.人工神经网络模型种类6.人工神经网络学习方式、规则,分类 二、感知器的介绍1.单层感知器(单层…

神经网络——最易懂最清晰的一篇文章

神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的…

【水滴石穿】报错解决不了

地址:https://github.com/Farukaksungur/React-Native- 转载于:https://www.cnblogs.com/smart-girl/p/10875511.html