Quorum区块链原理及其概念

article/2025/9/13 6:17:56

Quorum概述

Quorum是由摩根大通研发的企业级区块链,用于解决金融或满足于企业需求的行业的需求的平台[56]。Quorum是基于以太坊扩展研发的一种联盟链,适用于对交易效率和吞吐量比较高的企业应用。Quorum作为以太坊的许可实施方案,对以太坊设计的主要变更如下:
(1) 节点加入管理:对节点的加入增加了身份限制的管理,只有参与的节点才可以连接进入Quorum链,从而参与交易的验证、智能合同的部署和区块链的维护等工作。
(2) 共识机制的调整:默认条件下,Quorum链采用的是Raft共识机制和IBFT共识机制,还支持不同共识机制可插拔的体系结构。而以太坊使用的是PoW共识机制,对于资源造成了大量的浪费。Raft和IBFT算法共识过程更快,交易的确认速度更实时,比较适用于联盟链。
(3) 对隐私的支持:设计了隐私机制,在联盟链中只有参与交易的当事人可以访问私有交易,不想其他成员公开私有交易的信息。
(4) 取消了交易费用的花销:在Quorum链中取消了交易产生的汽油费的花销,但是燃料gas的设定仍然存在,不过被设定为零。

Quorum结构

如图3.5所示,在Quorum的结构中,Quorum节点主要沿用了以太坊的geth,而Constellation模块是负责对私有交易的支持。此模块由Transaction Manager 和 Enclave组成,在一个节点中两者一一对应。Transaction Manager模块用来存储私有交易的内容,并且与与其他节点的Transaction Manager交互,来进行管理私有的交易。Enclave模块负责生成交易的公钥与私钥对、交易的加密和解密操作。
在这里插入图片描述


http://chatgpt.dhexx.cn/article/1c4tsqdn.shtml

相关文章

Quorum 机制(分布式系统)

Quorum 机制,是一种分布式系统中常用的,用来保证数据冗余和最终一致性的投票算法,其主要数学思想来源于鸽巢原理。 基于Quorum投票的冗余控制算法 在有冗余数据的分布式存储系统当中,冗余数据对象会在不同的机器之间存放多份拷贝…

xgboost的原理,损失函数,优化,

不经感叹大佬真多,本文转自https://www.jianshu.com/p/7467e616f227 xgboostd多颗树的损失子树cart树,并且叶子节点为分数,不是类别,所有多棵树损失和容易优化,速度快分步提升,先优化一棵树,后面…

XGBoost简介

本文据此对XGBoost的原理做简单的介绍... XGBoost[1]是2014年2月诞生的专注于梯度提升算法的机器学习函数库,此函数库因其优良的学习效果以及高效的训练速度而获得广泛的关注。仅在2015年,在Kaggle[2]竞赛中获胜的29个算法中,有17个使用了XGB…

XGBoost原理及应用

XGBOST原理 XGBoost是使用梯度提升框架实现的高效、灵活、可移植的机器学习库,全称是EXtreme Gradient Boosting. XGBoost算法原理 其实算法的原理就是在一颗决策树的基础上不断地加树,比如在n-1颗树地基础上加一棵树变成n颗树的同时算法的精确率不断…

XGBoost原理与实例分析

这几天一直在研究XGboost的基本原理与代码调参,其原理是在GBDT的基础上进行优化,但也有很多的不同之处;所以自己准备更新两篇博客分为XGBoost原理与实例和XGBoost实战与调参优化来巩固这方面的知识。 一、XGBoost原理分析 在机器学习的问题…

XGBoost原理

前言 之前接触并实现过Adaboost和Random Forest。作为去年开始很火爆的,对结构化数据效果极佳的XGBoost,当然也需要了解一下了。下面将分段叙述XGBoost原理,以及与GBDT的关系等等内容。 ①、XGBoost vs GBDT 说到XGBoost,不得不说…

XGBoost算法原理以及实现

想问:在CSDN如何编辑数学公式呢? XGBoost算法是由GBDT算法演变出来的,GBDT算法在求解最优化问题的时候应用了一阶导技术,而XGBoost则使用损失函数的一阶导和二阶导,不但如此, 还可以自己定义损失函数&…

XGBoost原理介绍------个人理解版

本人第一次写博客,这是篇算法总结的文章,希望能对大家的学习有所帮助。有什么错误之处,还望留言指出,希望能与大家一起进步。 XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升,经常被用…

XGBoost原理及目标函数推导详解

前言 XGBoost(eXtreme Gradient Boosting)全名叫极端梯度提升,XGBoost是集成学习方法的王牌,在Kaggle及工业界都有广泛的应用并取得了较好的成绩,本文较详细的介绍了XGBoost的算法原理及目标函数公式推导。 一、XGBoo…

机器学习——XGboost原理及python实现

XGboost原理及实战 原理1 xgb是什么1.1 CART 回归树1.2 应用1.3 目标函数 2 xgb数学推导2.1 回归树2.2 加法模型2.3 前向分步算法2.4 目标函数2.5 正则项处理2.6 损失函数的处理 3 确定树的结构3.1 精确贪心法 4 具体算法流程:5 优化思路:5.1 压缩特征数…

XGBoost简单介绍

1. 概述 XGBoost本身的核心是基于梯度提升树实现的集成算法,整体来说可以有三个核心部分:集成算法本身,用于集成的弱评估器,以及应用中的其他过程。 1.1 提升集成算法: XGBoost的基础是梯度提升算法,因此…

XGBoost算法原理及基础知识

XGBoost原理——理论基础、公式推导、单机实现 前言一.简述XGBoost1.1算法类型:集成学习、监督学习1.2应用场景:回归、分类、排序1.3模型原理:串行方法、加法模型 二.集成学习及主要方法2.1Boosting 串行方法2.2Bagging 并行方法2.3Stacking …

xgboost算法原理

xgboost算法原理 1.xgboost的介绍 xgboost的全称(extreme gradient boosting)极限梯度提升,经常被用在一些比赛中,其效果显著。它是大规模并行boosted tree 的工具,是目前最快最好的开源Boosted tree工具包。xgboost所应用的算法…

Xgboost算法之原理+代码

https://blog.csdn.net/kwame211/article/details/81098025 这里有一套系统的XGBoost学习方法,结合学习吧! 1. XGBoost简介 xgboost一般和sklearn一起使用,但是由于sklearn中没有集成xgboost,所以才需要单独下载安装。xgboost是…

xgboost算法原理与实战

xgboost算法原理与实战 之前一直有听说GBM,GBDT(Gradient Boost Decision Tree)渐进梯度决策树GBRT(Gradient Boost RegressionTree)渐进梯度回归树是GBDT的一种,因为GBDT核心是累加所有树的结果作为最终结…

【原创】XGBoost分类器原理及应用实战

本文结合作者对xgboost原理的理解及使用xgboost做分类问题的经验,讲解xgboost在分类问题中的应用。内容主要包括xgboost原理简述、xgboost_classifier代码、xgboost使用心得和几个有深度的问题 XGBoost原理简述 xgboost并没有提出一种新的机器学习算法&#xff0c…

xgboost 算法原理

1、xgboost是什么 全称:eXtreme Gradient Boosting 作者:陈天奇(华盛顿大学博士) 基础:GBDT 所属:boosting迭代型、树类算法。 适用范围:分类、回归 优点:速度快、效果好、能处理大规模数据、支持多种…

xgboost入门与实战(原理篇)

xgboost入门与实战(原理篇) 前言: xgboost是大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包,比常见的工具包快10倍以上。在数据科学方面,有大量kaggle选手选用它进行数据挖掘比赛,其中包括两个以上kaggle比赛的夺冠方案。在工业界规模方面,x…

xgboost原理分析以及实践

摘要 本文在写完GBDT的三篇文章后本来就想写的,但一直没有时间,终于刚好碰上需要,有空来写这篇关于xgboost原理以及一些实践的东西(这里实践不是指给出代码然后跑结果,而是我们来手动算一算整个xgboost流程&#xff0…

机器学习—XGboost的原理、工程实现与优缺点

文章目录 一、xgboost简介二、xgboost原理1.从目标函数生成一棵树1.1学习第t颗树1.2xgboost的目标函数1.3泰勒公式展开1.4定义一棵树1.5定义树的复杂度1.6叶子节点归组1.7树结构打分 2.一棵树的生成细节2.1最优切分点划分算法2.1.1贪心算法2.1.2近似算法 2.2加权分位数缩略图2.…