【算法之动态规划(一)】动态规划(DP)详解

article/2025/9/29 9:03:32

一、基本概念


动态规划(dynamic programming)是 运筹学 的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初 美国 数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

二、基本思想与策略

    基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

    由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

    与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)

区别:

(1)动态规划和分治区别:

动态规划算法:它通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。

分治法:若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。

注:不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

 

三、适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

    (1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

    (2) 无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

   (3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势

 


四、求解的基本步骤

     动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

    初始状态→│决策1│→│决策2│→…→│决策n│→结束状态

                      图1 动态规划决策过程示意图

    (1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

    (2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

    (3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程

    (4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

    一般,只要解决问题的阶段状态状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。

实际应用中可以按以下几个简化的步骤进行设计:

    (1)分析最优解的性质,并刻画其结构特征。

    (2)递归的定义最优解。

    (3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值

    (4)根据计算最优值时得到的信息,构造问题的最优解

 


五、算法实现的说明

    动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。

     使用动态规划求解问题,最重要的就是确定动态规划三要素

    (1)问题的阶段 (2)每个阶段的状态

    (3)从前一个阶段转化到后一个阶段之间的递推关系

     递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处

    确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

          f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}

 


六、动态规划算法基本框架
复制代码
代码
   
1 for(j=1; j<=m; j=j+1) // 第一个阶段 2   xn[j] = 初始值; 3 4  for(i=n-1; i>=1; i=i-1)// 其他n-1个阶段 5   for(j=1; j>=f(i); j=j+1)//f(i)与i有关的表达式 6 xi[j]=j=max(或min){g(xi-1[j1:j2]), ......, g(xi-1[jk:jk+1])}; 8 9 t = g(x1[j1:j2]); // 由子问题的最优解求解整个问题的最优解的方案 10 11 print(x1[j1]); 12 13 for(i=2; i<=n-1; i=i+1 15 { 17 t = t-xi-1[ji]; 18 19 for(j=1; j>=f(i); j=j+1) 21 if(t=xi[ji]) 23 break; 25 }
复制代码

例 最短路径问题

如图,给定一个运输网络,两点之间连线上的数字表示两点间的距离。试求一条从A到E的运输路线,使总距离最短。

从图中可以看出,我们可以把从A到E的过程分成若干个阶段,这里是四个阶段。处于每个阶段时,都要选择走哪条支路——决策,一个阶段的决策除了影响该阶段的效果之外,还影响到下一阶段的初始状态,从而也就影响到整个过程以后的进程。因此,在进行某一阶段的决策时,就不能只从这一阶段本身考虑,而应使整体的效果最优。

我们可以从最后一个阶段开始,由终点向始点方向逐阶递推,寻找各点到终点的最短路径,当递推到始点时,即得到了从始点到终点的全过程最短路。这种由后向前的递推方法,正是动态规划的寻优思想。

 下面我们对这个问题进行求解。把从A到E的全过程分为四个阶段,用k表示阶段变量。第一阶段,有一个初始状态A,三条可供选择的支路,以此类推。我们用)表示在第k阶段由初始状态到下阶段的初始状态的支路距离。用)表示从第k阶段的到终点E的最短距离。

用逆序递推的方法:

1.阶段k = 4

第4阶段有两个初始状态。若全过程最短路径经过,则有)= 4 ;若全过程最短路径经过,则有)= 3 。

2.阶段 k = 3

假设全过程最短路径在第3阶段经过点:

若由,则有)+)=  4 + 4 = 8

若由,则有)+)=  6 + 3 = 9

因此,)= min(8,9)= 8 ,即由的最短路径是,最短距离是8。

类似地,假设全过程最短路径经过点,则有

)= min{[)+ )],[)+ )]}

         = min (7,8) = 7

即由的最短路径是由,最短距离是7。

同理可得出:)= min ( 6 , 6 ) = 6

的最短路径有两条,其距离都是6。

3.阶段 k = 2

类似地,可计算如下:

 =  min( 15 , 14 , 14 ) = 14

 =  min(11, 12 , 12 ) = 11

 =  min(14 , 15 , 13 ) = 13

因此,由的最短路径有三条,最短距离都是14;由的最短路径是,距离是11;由的最短路径有两条:,距离是13。

4.阶段 k = 1

 = min ( 16 , 15 , 16 ) = 15

因此,由的全过程最短路径是,最短距离是15。

从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到终点E的最短路径和最短距离,当逆序递推到过程始点A时,便得到全过程的最短路径及其最短距离,同时得到一族最优结果(即各阶段的各状态到终点E的最优结果)。和穷举法相比,逆叙递推方法大大减少了计算量,且大大丰富了计算结果。

此题也可以用顺序递推的方法求解,解法过程相似,在此就不赘述了。


例:求子数组之和的最大值

一个有N个元素的一维数组(a[0], a[1]….a[n-1]),我们定义连续的a[i] ~ a[j],0<= i, j <=n-1为子数组。

显然这个数组中包含很多子数组,请求最大的子数组之和。

如果不想时间复杂度,用遍历所有可能子数组,然后找出最大值就可以了。

现在如果要求时间复杂度最小,那么肯定是要DP解的。

我们假设定义两个数组:

all[i]:表示从i~n-1,最大的子数组之和。

start[i]:表示包含i,并且从i~n-1,最大子数组之和。

all[i]中max只有三种可能:

(1) a[i]单独就是最大,之后再加一个就会变小。
(2)a[i]+…a[j]最大,即start[i]最大
(3)a[x]+..a[j]最大,即不包含i的后序某一个子数组和最大。

最终,最大的子数组之和是all[0]。根据上述3个可能,很容易写出如下递推式:

start[i] = max (a[i], a[i]+start[i+1])
all[i] = max(start[i], all[i+1])

注意我们把上面max(a, b, c)拆成了两个max(a, b)

由于我们在计算start[i]/all[i]时候需要start[i+?]的值,所以我们从后向前递推dp。

代码如下,时间复杂度O(n):

 



一、基本概念



http://chatgpt.dhexx.cn/article/1QSjFGZu.shtml

相关文章

动态规划(dp)的总结

动态规划(dp)的总结 动态规划只要找到子问题&#xff0c;写起来就很简单&#xff0c;通常最多就二维dp数组即可解决问题&#xff0c;顶多再来个双dp&#xff0c;再加点逆向思维……下面列出我见过的子问题&#xff0c;别栽在dp上了&#xff0c;求求了。 能用dp做&#xff0c;…

数据结构与算法——动态规划(DP)

文章目录 1. 应用场景2. DP状态2.1 最优子结构2.2 无后效性2.3 解题思路 3. 问题类别3.1 线性DP3.1.1 经典问题3.1.1.1 [LeetCode 300. 最长上升子序列](https://leetcode-cn.com/problems/longest-increasing-subsequence/)3.1.1.2 [LeetCode 1143. 最长公共子序列](https://l…

关于动态规划(dp)

**动态规划(DP) 一.基本概念 动态规划&#xff08;英语&#xff1a;Dynamic programming&#xff0c;简称DP&#xff09;是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的&#xff0c;通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 它针对满足…

动态规划(DP)的原理、实现及应用

文章目录 1. 由一个例子说开&#xff1a; 斐波那契&#xff08;fibonacci&#xff09;数列 性能测试原因分析2. 记忆化搜索3. 动态规划&#xff08;Dynamic Programming&#xff0c;DP&#xff09; 最优子结构总结一下这几个解法&#xff1a;几个例题 LeetCode 70 Climbing St…

Hi3519AV100与Hi3559AV100在芯片规格 上主要差异

表1-1简要对比了Hi3519AV100与Hi3559AV100在规格方面的差异&#xff0c;Hi3519AV100的具体规格请参见《Hi3519AV100 ultra-HD Mobile Camera SoC 用户指南》。

海思平台(hi3559av100)异构多系统的使用Linux(2*A53+2*A73)+liteos(A53)+liteos(M7)

在文档《SDK安装及升级使用说明》中有对linuxliteos异构多系统的烧写有介绍。这里对其中的一些注意的地方记录以下&#xff0c;以备查验。 由于我的目标是要搭建一个ISP调试环境&#xff0c;就是使用海思的ittp_stream工具能够连接上开发板&#xff0c;并能够实时查看摄像头的…

M302H-ZN-Hi3798MV300/MV300H-当贝纯净桌面-卡刷固件包

M302H-ZN-Hi3798MV300&#xff0f;MV300H-当贝纯净桌面-卡刷固件包-内有教程 特点&#xff1a; 1、适用于对应型号的电视盒子刷机&#xff1b; 2、开放原厂固件屏蔽的市场安装和u盘安装apk&#xff1b; 3、修改dns&#xff0c;三网通用&#xff1b; 4、大量精简内置的没用…

华为海思 hikey970 详细介绍

前几天申请到了华为的开发板&#xff1a;hikey970 用来做项目的。 板子是这样的: 下面是在网中收集到的信息总结&#xff1a; 基于麒麟970的AI智慧算力&#xff0c;HiKey 970除了支持CPU和GPU的AI运算外&#xff0c;还支持基于NPU的神经网络计算硬件加速。 公开资料显示&am…

海思Hi3519AV100 emmc flash方式 linux系统移植 hitool工具烧写

因为我这里的海思文档只有SPI NOR Flash方式的详细烧写步骤&#xff0c;没有emmc方式的&#xff0c;本文提供一个自己成功的案例仅供参考和记录 1. 准备SDK、安装交叉编译工具、编译osdrv 1.1 解压SDK包 将Hi3519AV100_SDK_Vx.x.x.x.tgz文件放入ubuntu系统下&#xff08;wind…

海思3559:MMZ内存、OS内存配置

前言 海思3559的DDR最大支持到8GB hi3559av100芯片的内存地址范围 (1)通过查阅数据手册可知《Hi3559AV100 专业型 Smart IP Camera SoC 用户指南》&#xff0c;芯片的内存地址范围是0x4000_0000-0x23FFF_FFFF&#xff0c;最大能支持8G内存&#xff1b;   (2)海思芯片把内存分…

劲爆!java架构师百度网盘

第一份资料:Kafka实战笔记 Kafka入门为什么选择KafkaKarka的安装、管理和配置Kafka的集群第一个Kafka程序afka的生产者 Kafka的消费者深入理解Kafka可靠的数据传递

10本Java架构师必读书籍推荐

##### 1.《大型网站系统与Java中间件开发实践》 本书围绕大型网站和支撑大型网站架构的 Java 中间件的实践展开介绍。从分布式系统的知识切入&#xff0c;让读者对分布式系统有基本的了解&#xff1b;然后介绍大型网站随着数据量、访问量增长而发生的架构变迁&#xff1b;接着…

Java架构师需要哪些知识?

如何才能达到Java架构师技术要求标准&#xff1f;Java架构师需要熟练掌握复杂的数据结构和算法、熟练使用linux操作系统&#xff0c;Linux线上排除故障、熟悉tcp协议、系统集群、[负载均衡]、反向代理、动静分离&#xff0c;网站静态化、数据库设计能力、队列中间件等知识。 一…

JAVA架构师之路十六:设计模式之责任链模式

JAVA架构师之路十五&#xff1a;设计模式之策略模式 责任链模式 1. 责任链模式2. 登陆案例 3. 登陆案例优化 人生的游戏不在于拿了一副好牌&#xff0c;而在于怎样去打好坏牌&#xff0c;世上没有常胜将军&#xff0c;勇于超越自我者才能得到最后的奖杯。 1. 责任链模式 定义…

BAT面试高级进阶,Java架构师之路

说明 Java生鲜电商平台中由于采用了微服务架构进行业务的处理&#xff0c;买家&#xff0c;卖家&#xff0c;配送&#xff0c;销售&#xff0c;供应商等进行服务化&#xff0c;但是不可避免存在分布式事务的问题。 业界有很多的解决方案&#xff0c;对此我相信大家都百度一下…

JAVA架构师之路-视频学习

https://pan.baidu.com/s/1GK-HNdG_HsNTb_QQ6_L3Tg 目录&#xff1a; 第一套 JAVA高级架构师之旅 第2套 Java互联网架构师netty、mina、nio 第三套 阿里开源Dubbo 【第四套】互联网综合实战项目介绍 【第五套】高性能缓存Memcached服务深度原理及实战视频课程 【第六套】高级J…

JAVA架构师之路十五:设计模式之策略模式

JAVA架构师之路十四&#xff1a;设计模式之模板模式 策略模式 1. 策略模式2. 优惠券案例3. 支付案例 人生的游戏不在于拿了一副好牌&#xff0c;而在于怎样去打好坏牌&#xff0c;世上没有常胜将军&#xff0c;勇于超越自我者才能得到最后的奖杯。 1. 策略模式 定义 策略模式…

走向Java架构师之路:成为架构师要掌握的8大能力

架构师是什么?是一个既需要掌控整体又需要洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。一个架构师得需要足够的想像力,能把各种目标需求进行不同维度的扩展,为目标客户提供更为全面的需求清单。 如何才能达到Java架构师技术要求标准?Java架构师需要熟练…

JAVA架构师之路十一:设计模式之适配器模式

JAVA架构师之路十&#xff1a;设计模式之组合模式 适配器模式 1. 适配器模式2. 类适配器写法3. 对象适配器写法4. 接口适配器写法 钟表&#xff0c;可以回到起点&#xff0c;但已不是昨天。 生活中处处可见适配现象&#xff1a;手机充电器的充电头&#xff0c;电脑电源适配器&…

Java架构师:概述

一、Java架构师核心技术栈 二、架构师需要具备的其他能力 三、技术选型 四、早期传统JavaWeb开发模式 五、前后端分离开发模式 六、Maven聚合项目 七、数据库设计工具PDMan 八、数据库外键弊端【移除物理外键&#xff0c;而非逻辑外键】 数据库表与表之间字段间不要有物理外键…