微积分-链式法则

article/2025/9/20 2:55:02

来看复合函数如何求导:
在这里插入图片描述

现实中要解决的问题,大多可以总结为这三种函数的组合

减法可以看做是加上某个函数的-1倍
在这里插入图片描述
除法可以转化为乘法
在这里插入图片描述
先来看加法

两个函数的和的导数,就是他们导数的和
在这里插入图片描述

两个函数sin(x)和 x 2 x^2 x2

在这里插入图片描述
它们的和就是黄色这条线代表的函数
在这里插入图片描述
在x=0.5是他们的和这样表示
在这里插入图片描述
在数学上表示为x=0.5加上微小变化量dx处,sin(0.5+dx)的和 ( 0.5 + d x ) 2 (0.5+dx)^2 (0.5+dx)2的值相加后的导数
在这里插入图片描述
上式中sin(x)的导数是cos(x), x 2 x^2 x2的导数是 2 x 1 2x^1 2x1也就是2x

可得: d f d x = c o s ( x ) + 2 x \frac{df}{dx} \quad=cos(x)+2x dxdf=cos(x)+2x
在这里插入图片描述
乘法:

来看 f ( x ) = s i n ( x ) x 2 f(x)=sin(x)x^2 f(x)=sin(x)x2 的导数

乘法表示的函数,我们一般用面积大方法表示更直观:
在这里插入图片描述
对比上图,调整x的取值,会引起两个函数的变化,从而影响面积的变化

s i n ( x ) sin(x) sin(x) 的变化域在[-1,1]之间)

在这里插入图片描述
它的微小变化量我们任然用增加面积来表示:

在这里插入图片描述

宽度增加的值是 d ( s i n ( x ) ) d(sin(x)) d(sin(x))
高度增加了 d ( x 2 ) d(x^2) d(x2)
(注意这里的变化是想的变化引起的函数结果的变化)

这样第一个长条的面积就是 :长 s i n ( x ) sin(x) sin(x) × 高(增加的微小变化量) d ( x 2 ) d(x^2) d(x2)
在这里插入图片描述
加上第二个竖长条的面积,
在这里插入图片描述

第三个小块可以忽略不计

当dx趋近于0的时候,他的面积可以看做是正方形的面积 d ( x 2 ) d(x^2) d(x2),所以忽略不计,

意味着 d ( s i n ( x ) ) d(sin(x)) d(sin(x)) d ( x 2 ) d(x^2) d(x2)同样非常非常小

在这里插入图片描述
(2x代表x取一小段变化起点出处的导数,2x乘以dx才代表这一小段微小变化量的导数)
在这里插入图片描述

在这里插入图片描述

我们知道了导数 d ( s i n ( x ) ) d(sin(x)) d(sin(x)) d ( x 2 ) d(x^2) d(x2)的值,带入:
在这里插入图片描述
口诀:左乘右导,右乘左导

左边的函数 乘以右边函数的导数,加上右边的函数 乘以左边函数的导数
在这里插入图片描述

例如求一个常数乘以函数的导数
在这里插入图片描述
用面积表示为:

增加的小块面积=宽 d ( s i n ( x ) ) d(sin(x)) d(sin(x)) ×高_常数

加入常数为2,则 2× d ( s i n ( x ) ) d(sin(x)) d(sin(x)) =2cos(x)
在这里插入图片描述

再来看另外一种符合函数
在这里插入图片描述
这次我们用三个数轴表示函数

在这里插入图片描述
x变化是时,第二,三数轴引起的变化在这里插入图片描述

把中间的 x 2 x^2 x2看做h
则h增加了dh
s i n ( h ) sin(h) sin(h)增加了 d ( s i n ( h ) ) d(sin(h)) d(sin(h))
在这里插入图片描述
d ( s i n ( h ) ) d(sin(h)) d(sin(h))展开就是 c o s ( h ) ∗ d h cos(h)*dh cos(h)dh
在这里插入图片描述

给x赋值1.5
带入得到:

在这里插入图片描述
一直 d ( x 2 ) d(x^2) d(x2)=2xdx

再次展开
在这里插入图片描述
带入1.5
在这里插入图片描述
上式理解:

s i n ( x 2 ) sin(x^2) sin(x2) 的导数是 c o s ( x 2 ) cos(x^2) cos(x2),它的系数是 d ( x 2 ) d(x^2) d(x2),也就是 x 2 x^2 x2的导数,而 x 2 x^2 x2的导数是2x,它的系数是dx,从右向左理解

由此,对于复合函数
在这里插入图片描述


http://chatgpt.dhexx.cn/article/yyJoeLC4.shtml

相关文章

求导——链式法则

参考文献:https://www.math.hmc.edu/calculus/tutorials/multichainrule/

【深入浅出】条件概率的链式法则:定义、公式与应用

前言 在概率论的研究中,条件概率是一种非常重要的概念。当多个随机事件发生时,我们有时需要考虑它们同时发生的概率。条件概率的链式法则就是一种用于计算多个随机事件同时发生的概率的方法。本文将会介绍条件概率的链式法则的定义、公式以及应用。 定…

深度学习基础6(微分,偏导,梯度,链式法则)

微积分 如下图所示,内接多边形的等长边越多,就越接近圆。 这个过程也被称为逼近法(method of exhaustion)。 事实上,逼近法就是**积分(integral calculus)**的起源 微积分的另一支&#xff0c…

浅谈神经网络之链式法则与反向传播算法

反向传播是训练神经网络最重要的算法,可以这么说,没有反向传播算法就没有深度学习的今天。但是反向传播算法涉及一大堆数据公式概念。所以我们了解导数计算过程以及要介绍的新的复合函数多层求导计算过程。 链式法则 简单的说链式法则就是原本y对x求偏…

链式法则-梯度更新公式推导(手写笔记)

虽然以前学过导数、偏导、梯度之类的相关知识,但时间久远导致总感觉晕晕乎乎的,于是自己推导一下具有一个隐藏层的神经网络的梯度反向传播公式,希望对大家有帮助。 笔记中指出了为什么会存在梯度消失以及梯度爆炸现象。 梯度消失 主要是由…

微积分拾遗——链式法则

链式法则(chain rule)微积分中求导法则,用于求复合函数的导数; 链式法则应用广泛,比如神经网络中的反向传播算法就是已链式法则为基础演变的;接下来先说说链式法则的概念然后通过链式法则的两种形式学习链式…

概率论 中的 链式法则

2个事件同时发生的概率: P(a, b) P(a | b) * P(b) 其中:P(a, b)表示 a和b事件同时发生的概率, P(a | b)是一个条件概率,表示在b事件发生的条件下,a发生的概率 3个事件的概率链式调用: P(a, b, c) P(a …

链式法则---微积分链式法则和概率链式法则

本篇介绍了微积分链式法则和概率链式法则。 一、概率链式法则 这里首先给出概率链式法则的公式:N个事件的概率链式法则如下, P(X1, X2, ... Xn) P(X1 | X2, X3 ... Xn) * P(X2 | X3, X4 ... Xn) ... P(Xn-1 | Xn) * P(Xn)。 概率链式法则的作用特别…

链式法则(chain rule)

链式法则 链式法则:两个函数组合起来的复合函数,导数等于里面函数代入外函数值的导乘以里面函数之导数; Quotient Rule Chain rule 代码实现

华硕路由器无线打印服务器怎么开启,华硕ASUS路由器无线中继模式设置教程

宽带路由器在一个紧凑的箱子中集成了路由器、防火墙、带宽控制和管理等功能,具备快速转发能力,灵活的网络管理和丰富的网络状态等特点。最近有用户想知道华硕(ASUS)路由器无线中继模式怎么设置,小编整理了详细教程,跟着步骤大家一定都能成功 具体介绍 一、确定主路由器参数…

华硕路由器配置虚拟服务器,华硕ASUS路由器无线中继模式设置步骤图解

原标题:"华硕ASUS路由器无线中继模式设置教程"相关路由器设置经验分享。 - 来源:191路由网 宽带路由器在一个紧凑的箱子中集成了路由器、防火墙、带宽控制和管理等功能,具备快速转发能力,灵活的网络管理和丰富的网络状态等特点。最近有用户想知道华硕(ASUS)路由器…

tplink迷你路由器中继模式_TP-Link无线路由器中继模式设置教程

在生活中,小伙伴们多多少少都会遇到在上洗手间、阳台上、或者信号比较差的地方,用手机上网,发现网络很差,通讯信号弱,WIFI信号强度几近于无,上网等加载条等半天,那种心如刀割的心情,确实让人恼火!今天呢,A君在这给大家科普一下中继模式(Repeater),教大家怎么让WIFI信…

华硕路由搭建php网站,华硕路由器操作模式

*无线路由器 在无线路由器模式中,RT-AC88U 透过 PPPoE、DHCP、PPTP、L2TP 或静态 IP 连接至网络,并且将无线网络分享至 LAN 客户端或设备。 在此模式中,NAT、防火墙与 DHCP 服务器默认为开启。支持 UPnP 与动态 DNS 适用于 SOHO 与家庭使用者…

android 路由模式设置,安卓手机设置路由器的方法教程步骤图

现在很多人使用的智能手机都是安卓系统的,很多时候我们在使用安卓手机连接路由器之后直接就可以对路由器进行设置,不需要通过电脑了,下面是学习啦小编整理的安卓手机设置路由器的方法,供您参考。 安卓手机设置路由器的方法 首先&a…

路由器的桥接方式

如果你家恰好比较大,又恰好有多台路由器,那么该如何将它们桥接起来,实现全屋的WIFI全覆盖呢?下面我们以两台路由器为例,简单介绍一下常用的几种桥接方式。 一、无线桥接 所谓无线桥接,即是把两台不同物理位…

asus路由器无线桥接模式设置

在客厅加了一个华硕路由器增强一下无线信号,记录一下。 固件版本:3.0.0.4.380 型号:RT-AC1200G 参考网址:https://www.asus.com.cn/support/FAQ/1036082 按照教程设置完成后发现依旧不能上网,又重新设置了一遍&…

路由模式和桥接模式的区别

目录 路由器和交换机的区别一、指代不同二、功能不同三、特点不同四、总结 路由模式桥接模式运营商为啥现在都是路由模式光猫去拨号?一、作用二、原因 最佳组网方案---改光猫为桥接方法一、二层模式二、优点三、缺点 VLAN模式一、transparent二、tag/untag 路由器和…

路由器的模式之间有什么区别

现在的路由器根据网络用户群的不同需求,提供了很多种连接模式,只有选对了合适的模式,才能充分发挥路由器的功能。但与此同时,这种多模式的选择,往往也让新手用户无所适从,在众多专业名词中,不知…

华硕(ASUS)路由器AP模式设置教程

华硕(ASUS)路由器AP模式设置教程 总结就是 1.AP路由设置LANIP跟一级路由同一个网段,例如,一级的是192.168.1.1,AP:192.168.1.X。 2.把一级路由的网关和DNS填上AP那里 问:华硕路由器AP模式怎么设置? 原来网…