RANSAC算法

article/2025/9/8 13:57:35

算法基本思想和流程

RANSAC是通过反复选择数据集去估计出模型,一直迭代到估计出认为比较好的模型。
具体的实现步骤可以分为以下几步:

  1. 选择出可以估计出模型的最小数据集;(对于直线拟合来说就是两个点,对于计算Homography矩阵就是4个点)
  2. 使用这个数据集来计算出数据模型;
  3. 将所有数据带入这个模型,计算出“内点”的数目;(累加在一定误差范围内的适合当前迭代推出模型的数据)
  4. 比较当前模型和之前推出的最好的模型的“内点“的数量,记录最大“内点”数的模型参数和“内点”数;
  5. 重复1-4步,直到迭代结束或者当前模型已经足够好了(“内点数目大于一定数量”)。

迭代次数推导

这里有一点就是迭代的次数我们应该选择多大呢?这个值是否可以事先知道应该设为多少呢?还是只能凭经验决定呢? 这个值其实是可以估算出来的。下面我们就来推算一下。

假设“内点”在数据中的占比为 [公式]

[公式]

那么我们每次计算模型使用 [公式] 个点的情况下,选取的点至少有一个外点的情况就是

[公式]

也就是说,在迭代 [公式] 次的情况下, [公式] 就是 [公式] 次迭代计算模型都至少采样到一个“外点”去计算模型的概率。那么能采样到正确的 [公式] 个点去计算出正确模型的概率就是

[公式]

通过上式,可以求得

[公式]

“内点”的概率  [公式] 通常是一个先验值。然后  [公式] 是我们希望RANSAC得到正确模型的概率。如果事先不知道  [公式] 的值,可以使用自适应迭代次数的方法。也就是一开始设定一个无穷大的迭代次数,然后每次更新模型参数估计的时候,用当前的“内点”比值当成  [公式] 来估算出迭代次数。

用Python实现直线拟合

import numpy as np
import matplotlib.pyplot as plt
import random
import math# 数据量。
SIZE = 50
# 产生数据。np.linspace 返回一个一维数组,SIZE指定数组长度。
# 数组最小值是0,最大值是10。所有元素间隔相等。
X = np.linspace(0, 10, SIZE)
Y = 3 * X + 10fig = plt.figure()
# 画图区域分成1行1列。选择第一块区域。
ax1 = fig.add_subplot(1,1, 1)
# 标题
ax1.set_title("RANSAC")# 让散点图的数据更加随机并且添加一些噪声。
random_x = []
random_y = []
# 添加直线随机噪声
for i in range(SIZE):random_x.append(X[i] + random.uniform(-0.5, 0.5)) random_y.append(Y[i] + random.uniform(-0.5, 0.5)) 
# 添加随机噪声
for i in range(SIZE):random_x.append(random.uniform(0,10))random_y.append(random.uniform(10,40))
RANDOM_X = np.array(random_x) # 散点图的横轴。
RANDOM_Y = np.array(random_y) # 散点图的纵轴。# 画散点图。
ax1.scatter(RANDOM_X, RANDOM_Y)
# 横轴名称。
ax1.set_xlabel("x")
# 纵轴名称。
ax1.set_ylabel("y")# 使用RANSAC算法估算模型
# 迭代最大次数,每次得到更好的估计会优化iters的数值
iters = 100000
# 数据和模型之间可接受的差值
sigma = 0.25
# 最好模型的参数估计和内点数目
best_a = 0
best_b = 0
pretotal = 0
# 希望的得到正确模型的概率
P = 0.99
for i in range(iters):# 随机在数据中红选出两个点去求解模型sample_index = random.sample(range(SIZE * 2),2)x_1 = RANDOM_X[sample_index[0]]x_2 = RANDOM_X[sample_index[1]]y_1 = RANDOM_Y[sample_index[0]]y_2 = RANDOM_Y[sample_index[1]]# y = ax + b 求解出a,ba = (y_2 - y_1) / (x_2 - x_1)b = y_1 - a * x_1# 算出内点数目total_inlier = 0for index in range(SIZE * 2):y_estimate = a * RANDOM_X[index] + bif abs(y_estimate - RANDOM_Y[index]) < sigma:total_inlier = total_inlier + 1# 判断当前的模型是否比之前估算的模型好if total_inlier > pretotal:iters = math.log(1 - P) / math.log(1 - pow(total_inlier / (SIZE * 2), 2))pretotal = total_inlierbest_a = abest_b = b# 判断是否当前模型已经符合超过一半的点if total_inlier > SIZE:break# 用我们得到的最佳估计画图
Y = best_a * RANDOM_X + best_b# 直线图
ax1.plot(RANDOM_X, Y)
text = "best_a = " + str(best_a) + "\nbest_b = " + str(best_b)
plt.text(5,10, text,fontdict={'size': 8, 'color': 'r'})
plt.show()

 


http://chatgpt.dhexx.cn/article/xv7GoE1b.shtml

相关文章

RANSAC迭代估计

RANSAC迭代估计 1. 定义2. 功能3. 流程4. 迭代次数推导5. 实现直线拟合 1. 定义 根据一组包含异常数据的样本数据集&#xff0c;计算出数据的数学模型参数&#xff0c;得到有效样本数据的算法 从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法 “外点”一…

RANSAC

转自&#xff1a;http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html 作者&#xff1a;王先荣 本文翻译自维基百科&#xff0c;英文原文地址是&#xff1a;http://en.wikipedia.org/wiki/ransac&#xff0c;如果您英语不错&#xff0c;建议您直接查看原文。 …

机器视觉:ransac算法详解

目录 一、说明&#xff1a; 二、算法步骤 三、算法代码 四、其它补充 一、说明&#xff1a; RANSAC是一种常用的参数估计方法&#xff0c;全称为Random Sample Consensus&#xff08;随机抽样一致性&#xff09;。它通过随机选择数据中的一部分&#xff0c;然后根据这些数据…

RANSAC算法介绍与总结

RANSAC算法 简介RANSAC地面分割 简介 粒子分割主要使用RANSAC算法. RANSAC全称Random Sample Consensus, 即随机样本一致性, 是一种检测数据中异常值的方法. RANSAC通过多次迭代, 返回最佳的模型. 每次迭代随机选取数据的一个子集, 并生成一个模型拟合这个子样本, 例如一条直线…

RANSAC算法原理

RANSAC是“RANdom SAmple Consensus&#xff08;随机抽样一致&#xff09;”的缩写。它可以从一组包含“局外点”的观测数据集中&#xff0c;通过迭代方式估计数学模型的参数。它是一种不确定的算法&#xff0c;有一定的概率得出一个合理的结果。为了提高得出合理结果的概率必须…

RANSAC算法理解

RANSAC是“RANdom SAmple Consensus&#xff08;随机抽样一致&#xff09;”的缩写。它可以从一组包含“局外点”的观测数据集中&#xff0c;通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果&#xff1b;为了提高概率必须提高迭代次…

RANSAC算法(附RANSAC直线拟合C++与Python版本)

文章目录 RANSAC算法简介RANSAC算法基本思想和流程迭代次数推导RANSAC与最小二乘区别RANSAC直线拟合代码&#xff08;C及Python版本&#xff09;C版本代码Python版本代码如下&#xff1a; RANSAC优缺点参考 RANSAC算法简介 RANSAC(RANdom SAmple Consensus,随机采样一致)算法是…

php 枚举类代替hard code代码

新建OrderEnum枚举类 在控制器调用

ERP text object hard code

Created by Wang, Jerry, last modified on Sep 28, 2016 要获取更多Jerry的原创文章&#xff0c;请关注公众号"汪子熙":

Do not hardcode /data/; use Context.getFilesDir().getPath() instead 解决方法

在Android项目中如果使用字符串路径会提示 Do not hardcode "/data/"; use Context.getFilesDir().getPath() instead&#xff0c;如图所示 原因是因为硬编码不是对任何设备都适合&#xff0c;在一些设备上可能会给出错误消息或无法正常工作。可以做如下替换。 Stri…

Drool7s 什么叫KIE和生命周期-系列03课

KIE是缩写&#xff0c;knowledge is everything。可以理解成一个上层接口&#xff0c;本质是由很多个实现类去实现功能的。 另外关于drool7s的生命周期&#xff0c;请看下图 本文只是让你了解drools7的一些概念&#xff0c;也是开始实践的基础。如果不了解这些知识的话&#xf…

drool 7.x 属性 : agenda-group

Agenda Group 是用来在Agenda 的基础之上,对现在的规则进行再次分组,具体的分组方法可以采用为规则添加agenda-group 属性来实现。 agenda-group 属性的值也是一个字符串,通过这个字符串,可以将规则分为若干个Agenda Group,默认情况下,引擎在调用这些设置了agenda-group …

drools视频教程(drool实战实例+数据库+视频讲解)

特别说明&#xff1a;此教程适用任何版本的drools&#xff0c;因为编程思想是不变的 drools的资料网上也有不少&#xff0c;但是大都是讲基础的&#xff0c;几乎没有讲在项目中到底怎么用的&#xff0c;小哥当时学的时候也是&#xff0c;网上看了很多文档&#xff0c;但是还是不…

Drool实战系列(二)之eclipse安装drools插件

这里演示是drools7.5.0&#xff0c;大家可以根据自己需要安装不同的drools版本 drools安装地址: http://download.jboss.org/drools/release/ 一、 二、点击进入7.6.0.Final,并选择droolsjbpm-tools-distribution-XXX.zip(XXX为版本号)进行下载 三、将下载完的插件解压到本地 启…

drool 7.x 属性 : lock-on-active

lock-on-active true&#xff1a;通过这个标签&#xff0c;可以控制当前的规则只会被执行一次&#xff0c;因为一个规则的重复执行不一定是本身触发的&#xff0c;也可能是其他规则触发的&#xff0c;所以这个是no-loop的加强版。当然该标签正规的用法会有其他的标签的配合&…

Drool7s kmodule的作用--系列02课

本文是介绍drool7s kmodule。 一、为什么komdule.xml文件一定要放在resources下的META-INF文件夹中 ---》直接看源码吧&#xff0c;请看下图&#xff0c;应该都知道为什么要放在固定文件夹下。 二、下面是一些知识点&#xff0c;需要大家记住的 kmodule中可以包含一个或多个…

Java Drool规则引擎

2019独角兽企业重金招聘Python工程师标准>>> Drools是一个基于java的规则引擎&#xff0c;开源的&#xff0c;可以将复杂多变的规则从硬编码中解放出来&#xff0c;以规则脚本的形式存放在文件中&#xff0c;使得规则的变更不需要修正代码重启机器就可以立即在线上环…

Drool学习记录(二) Kie Session、Truth maintenance

参考Drools官方文档(3.1 KIE Session和3.2 Inference and truth maintenance in the Drools engine)&#xff0c;学习关于Kie Session和Truth maintenace的内容。这两节内容虽然很基础&#xff0c;但是感觉官方文档说的还是不够明了&#xff0c;尤其是Stateless Session和State…

drool 7.x 属性 : no-loop

drool 7.x 属性 : no-loop 测试类参考:https://blog.csdn.net/qq_21383435/article/details/82872537 实体类:com.secbro.drools.model.Product 规则:/Users/lcc/IdeaProjects/AllTest/drools_test7/src/main/resources/rules.blog/noLoopSession.drl package rules.blogim…