模型树–M5

article/2025/10/4 15:15:03

模型树–M5

模型树推广了回归树的概念,它与回归树的2个重要不同在于

  • 叶节点上不是常量,而是一个线性函数模型。
  • 分割空间的标准不是降低平方误差,而是降低样本标准差。
  • 相比于回归树,模型树的优点在于:回归树的计算量随着维度的增加而迅速增加,但模型树比模型小得多,所以模型树在处理高维(数百)数据时会比较轻松。由于叶节点是采用的是线性函数而非常量,所以预测的精度更高。
    M5模型树划分的标准是:将一个节点覆盖的样本的Y值(即目标属性值)的标准差看作误差的度量。计算SDR(standard deviation reduction)

    T是到达该节点的实例的集合,|T|表示集合的大小,sd表示标准差,T i 是第i个子树上的实例集合,一般采用的模型树是都是二叉树,所以i的取值只有1和2。
    最佳划分s*从候选划分集合S中取得,并且使得SDR最大。如何求得S呢?跟在回归树中的方法一样,按某一个属性对实例进行排序,只要相邻的两例在该属性上不相等,就在它们之间切开。一个属性上最多有n-1种切分方式,n是实例的个数。
    树停止生长的条件有2个:
    1. 节点包含的样本数小于一个阈值。
    2. 节点包含样本的Y值标准差与全体样本Y值标准差的比值小于一定阈值。
    在叶节点上,对本节点包含的实例利用线性回归算法产生一个多元回归方程,得到线性模型。
    剪枝是一个bottom-up的递归过程,利用线性回归方法拟合出每个节点的回归方程,计算出回归函数预测的均方误差:

    计算每个节点到其子节点的MSE的减小量:

    E R 大于0时该子树保留,否则将该子树转变成一个叶子节点。
    剪枝后树叶节点上邻近线性模型之间就会出现尖锋的不连续性,使用平滑算法修改相邻的线性方程,使得对应于不同方程的相邻输入向量的预测输出值变得接近。对于较少训练实例构造的模型,平滑过程尤其重要。

    f parent 为叶子上级父结点拟合方程,f child 为叶子结点拟合方程,n 为到达本叶子结点的训练样本数目,k 为一个常数(通常取值15),f new 为合并的方程。若子结点采用新函数后的R MSE 变化小于一定的阈值,则用f new 取代子结点的线性方程,否则不进行平滑处理。

    参考文献地址:http://www.voidcn.com/article/p-nngfccdl-zz.html


http://chatgpt.dhexx.cn/article/xSR1egfk.shtml

相关文章

机器学习——模型树

和回归树(在每个叶节点上使用各自的均值做预测)不同,模型树算法需要在每个叶节点上都构建出一个线性模型,这就是把叶节点设定为分段线性函数,这个所谓的分段线性(piecewise linear)是指模型由多…

深度学习人脸检测与人脸识别

一、概述 1. 基本概念 人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别、人脸检索等。人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常…

各类人脸识别算法的总体分析

一、人脸识别算法之特征脸方法(Eigenface) 1、原理介绍及数据收集 特征脸方法主要是基于PCA降维实现。 详细介绍和主要思想可以参考 http://blog.csdn.net/u010006643/article/details/46417127 上述博客的人脸数据库打不开了,大家可以去下…

人脸识别算法初次了解

人脸识别算法初次了解 这是转载别人的帖子,觉得好,大家一块学习http://www.cnblogs.com/guoyiqi/archive/2011/07/28/2129300.html 前言 在写此文之前,先扯点东西。我一直在找一个东西,让我思考,让我久久的深陷其…

深扒人脸识别技术,原理、算法深度解析

在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等…

基于特征脸的人脸识别算法概述

基于特征脸的人脸识别算法概述 —— 才疏学浅, 难免有错误和遗漏, 欢迎补充和勘误. 特征脸识别算法(EigenFaceRecognizer)是一种在主成分分析(PCA)中进行人脸辨识的技术。基于特征脸的驾驶人身份识别流程图为: 图1 …

人脸检测与识别

人脸检测( Face Detection )和人脸识别技术是深度学习的重要应用之一。本章首先会介绍MTCNN算法的原理, 它是基于卷积神经网络的一种高精度的实时人脸检测和对齐技术。接着,还会介绍如何利用深度卷积网络提取人脸特征,…

人脸检测算法综述

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。 书的购买链接书的勘误,优化,源代码资源导言 人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人证比对…

现在人脸识别最好的算法是哪种?

目前看来,基于深度学习是在人脸识别领域效果比较出色的机器学习方法。 但从学术的角度来讲,“最好”是一个谨慎的词语,深度学习从以往不被认可逐渐成长为机器学习的主流,同样,也难保未来会有其它方法会取代深度学习。 …

经典人脸识别算法(特征脸,FISHERFACE,LBP)

首先,只是基于对算法的主要是想的介绍和理解,对于涉及到的PCA以及直方图比较提到的方法等等可以自己再去深入研究。 其次,只是用作笔记记录。 参考了CSDN博客:https://blog.csdn.net/smartempire/article/details/23377385 htt…

人脸识别算法及系统

首先说下哦 也就给自己当个记事本发了 内容可能也是老生常谈 不喜勿喷 人脸识别的目标 总结两点,第一,认出同一个人,不管你的状态怎么变,都能知道你就是你。第二、区分不同的人,可能这两个人长得很像,或者…

人脸检测:人脸检测算法综述

https://blog.csdn.net/SIGAI_CSDN/article/details/80751476 问题描述 人脸检测的目标是找出图像中所有的人脸对应的位置,算法的输出是人脸外接矩形在图像中的坐标,可能还包括姿态如倾斜角度等信息。下面是一张图像的人脸检测结果: 虽然人…

人脸检测技术——深度学习算法原理

人脸检测技术——深度学习算法原理 人脸检测技术——深度学习算法原理1. 通用目标检测网络1.1 faster-rcnn检测算法的基本原理1.2 faster-rcnn应用于人脸检测 2. 专门应用于人脸检测的卷积神经网络2.1 专门用于人脸检测的卷积神经网络的发展现状2.2 cascadeCNN2.3 MTCNN 3. 人脸…

什么是人脸识别,人脸识别算法大致分为几种?

如果要给人脸识别下个定义,它是利用人的生物特征实现个体区分的一种技术,一般包括图像采集、特征定位、身份的确认和查找三个环节。简单来说,人脸识别就是从图像中提取面部特征关键点,比如骨骼特征、眉毛高度等,通过比…

基于深度学习的人脸识别算法

基于深度学习的人脸识别算法 简介Contrastive LossTriplet LossCenter LossA-Softmax Loss参考文献: 简介 我们经常能从电影中看到各种神奇的人脸识别技术,例如图1。人脸识别技术是基于面部特征信息进行身份识别的一种生物识别技术。该技术在图片/视频中…

人脸检测算法分类

由于上次在Altea申请的License到期了,因为申请还挺麻烦的,而且申请周期太长了,最后主要因为本人的电脑实在太。。。,编译一个SOC-FPGA的程序需要6-10个小时。。。所以现在基本搁置了OpenCL的学习,开始接触机器视觉。各…

人脸识别算法原理过程详解

本文为转载内容,由于找不到源作者链接,故特此说明。 人脸识别各算法详解 最近,由于工作需要,为了找到一款高效的人脸识别算法,对各种人脸识别算法都研究了一番,以下记录的是各算法的理论基础。 一.MTCNN…

浅析人脸识别算法及其应用

前言 随着深度学习和计算机硬件的快速发展,基于深度卷积神经网络的一系列算法都取得了显著的进展,其中人脸识别作为计算机视觉领域中时间最久远、应用最广泛的研究课题之一,近些年也在深度学习的加持下在性能方面获得了大幅提升,…

了解面部识别的不同算法

介绍 任何面部检测和识别程序或系统都必须以人脸识别算法为核心。这些算法由专家分为两大类。几何方法专注于识别特征。为了从图像中提取值,应用了光度统计方法。然后,为了删除变体,将这些值与模板进行比较。此外,算法可以分为两…

人脸识别各算法详解

人脸识别各算法详解 最近,由于工作需要,为了找到一款高效的人脸识别算法,对各种人脸识别算法都研究了一番,以下记录的是各算法的理论基础。 一.MTCNN 本文章主要介绍MTCNN算法的流程,MTCNN主要由三个框架组成&#…