各种FPN:PANet、ASFF、NAS-FPN、BiFPN、Recursive-FPN...

article/2025/9/22 8:55:09

早期的物体检测算法,无论是一步式的,还是两步式的,通常都是在Backbone的最后一个stage(特征图分辨率相同的所有卷积层归类为一个stage)最后一层的特征图,直接外接检测头做物体检测。此种物体检测算法,可以称之为单stage物体检测算法。

由于单stage物体检测算法中,Backbone的最后一个stage的stride通常是32,导致输出的特征图分辨率是输入图片分辨率的1/32,太小,不利于物体检测,因此单stage的物体检测算法,一般会将最后一个stage的MaxPooling去掉或者将stride为2的conv改为stride为1的conv,以增大最后一个分辨率。

后来研究发现,单stage物体检测算法中,无法用单一stage的特征图同时有效的表征各个尺度的物体,因此,后来物体检测算法,就逐渐发展为利用不同stage的特征图,形成特征金字塔网络(feature parymid network),表征不同scale的物体,然后再基于特征金字塔做物体检测,也就是进入了FPN时代。

解构物体检测各个阶段

在这里插入图片描述

如上图,我们常见的物体检测算法,其实可以分解为三个递进的阶段:

1)Backbone生成特征阶段

计算机视觉任务一般都是基于常用预训练的Backbone,生成抽象的语义特征,再进行特定任务微调。物体检测也是如此。

Backbone生成的特征,一般按stage划分,分别记作C1、C2、C3、C4、C5、C6、C7等,其中的数字与stage的编号相同,代表的是分辨率减半的次数,如C2代表stage2输出的特征图,分辨率为输入图片的1/4,C5代表,stage5输出的特征图,分辨率为输入图片的1/32。

2)特征融合阶段

这个是FPN特有的阶段,FPN一般将上一步生成的不同分辨率特征作为输入,输出经过融合后的特征。输出的特征一般以P作为编号标记。如FPN的输入是,C2、C3、C4、C5、C6,经过融合后,输出为P2、P3、P4、P5、P6。

3)检测头输出bounding box

FPN输出融合后的特征后,就可以输入到检测头做具体的物体检测。

FPN的演进

物体检测性能提升,一般主要通过数据增强、改进Backbone、改进FPN、改进检测头、改进loss、改进后处理等6个常用手段。

其中FPN自从被提出来,先后迭代了不少版本。大致迭代路径如下图:
在这里插入图片描述
1)无融合
无融合,又利用多尺度特征的典型代表就是2016年的鼎鼎有名的SSD,它直接利用不同stage的特征图分别负责不同scale大小物体的检测
在这里插入图片描述
2)自上而下单向融合
自上而下单向融合的FPN,事实上仍然是当前物体检测模型的主流融合模式。如我们常见的Faster RCNN、Mask RCNN、Yolov3、RetinaNet、Cascade RCNN等,具体各个FPN的内部细节如下图。
在这里插入图片描述
a)Faster/Master/Cascade RCNN中的FPN

Faster/Master/Cascade RCNN中的FPN,利用了C2-C6五个stage的特征,其中C6是从C5直接施加1x1/2的MaxPooling操作得到。FPN融合后得到P2-P6,其中P6直接等于C6,P5是先经过1x1Conv,再经过3x3Conv得到,P2-P4均是先经过1x1Conv,再融合上一层2xUpsample的特征,再经过3x3Conv得到。具体过程可以看上图。

b)RetinaNet中的FPN

RetinaNet中的FPN,利用了C3-C7五个stage的特征,其中C6是从C5直接施加3x3/2的Conv操作得到,C7是从C6直接施加3x3/2的Conv操作得到。FPN融合后得到P3-P7,其中P6、P7直接等于C6、C7,P5是先经过1x1Conv,再经过3x3Conv得到,P3-P4均是先经过1x1Conv,再融合上一层2xUpsample的特征,再经过3x3Conv得到。具体过程可以看上图。

可以看出,RetinaNet基本与Faster/Master/Cascade RCNN中的FPN一脉相承。只是利用的stage的特征略有差别,Faster/Master/Cascade RCNN利用了高分辨率低语义的C2,RetinaNet利用了更低分辨率更高语义的C7。其他都是细微的差别。

c)Yolov3中的FPN

Yolov3中的FPN与上述两个有比较大的区别。首先,Yolov3中的FPN只利用到了C3-C5三个stage的特征;其次,从C5征到P5特征,会先经过5层Conv,然后再经过一层3x3Conv;最后,C3-C4到P3-P4特征,上一层特征会先经过1x1Conv+2xUpsample,然后先与本层特征concatenate,再经过5层Conv,之后经过一层3x3Conv。看图最清楚。

可以看图仔细对比Yolov3与Faster/Master/Cascade RCNN以及RetinaNet细节上的区别。

3)简单双向融合

FPN自从提出来以后,均是只有从上向下的融合,PANet是第一个提出从下向上二次融合的模型,并且PANet就是在Faster/Master/Cascade RCNN中的FPN的基础上,简单增了从下而上的融合路径。看下图。
在这里插入图片描述
4)复杂的双向融合

PANet的提出证明了双向融合的有效性,而PANet的双向融合较为简单,因此不少文章在FPN的方向上更进一步,尝试了更复杂的双向融合,如ASFF、NAS-FPN和BiFPN

ASFF
ASFF(论文:Learning Spatial Fusion for Single-Shot Object Detection)作者在YOLOV3的FPN的基础上,研究了每一个stage再次融合三个stage特征的效果。如下图。其中不同stage特征的融合,采用了注意力机制,这样就可以控制其他stage对本stage特征的贡献度。
在这里插入图片描述
NAS-FPN和BiFPN
NAS-FPN(基于搜索结构的FPN )和BiFPN,都是google出品,思路也一脉相承,都是在FPN中寻找一个有效的block,然后重复叠加,这样就可以弹性的控制FPN的大小。
在这里插入图片描述
其中BiFPN的具体细节如下图。
在这里插入图片描述

Recursive-FPN

递归FPN是此文写作之时前两周刚刚新出炉的(原论文是DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution),效果之好令人惊讶,使用递归FPN的DetectoRS是目前物体检测(COCO mAP 54.7)、实体分割和全景分割的SOTA,太强悍了。

递归FPN理解起来很容易,就是将传统FPN的融合后的输出,再输入给Backbone,进行二次循环,如下图。
在这里插入图片描述
下图给出了FPN与Recursive-FPN的区别,并且把一个2层的递归FPN展开了,非常简单明了,不做过多介绍。
在这里插入图片描述

5)M2det中的SFAM

M2det中的SFAM,比较复杂,它是先把C3与C5两个stage的特征融合成一个与C3分辨率相同的特征图(下图中的FFM1模块),然后再在此特征图上叠加多个UNet(下图中的TUM模块),最后将每个UNet生成的多个分辨率中相同分辨率特征一起融合(下图中的SFAM模块),从而生成最终的P3、P4、P5、P6特征,以供检测头使用。具体如下图。
在这里插入图片描述
每一个模块的详细细节如下图。
在这里插入图片描述

FPT(Transformer)

源论文:FPT
源代码:FPT源码pytorch
其次还有很多FPN变体,可谓数不胜数。。。Fully-FPN,Simple-PAN,Libra R-CNN等等等等

思考

FPN的优化会显著带来物体检测的性能提升,当前最好的FPN是递归FPN,期待将来更有效的FPN出现。

最近Facebook出了一篇文章object detection by transformer,如果transformer与各种强大的FPN结合,效果如何还是值得期待。


http://chatgpt.dhexx.cn/article/pxC6HdUq.shtml

相关文章

FPN网络详解

特征图金字塔网络FPN(Feature Pyramid Networks)是2017年提出的一种网络,FPN主要解决的是物体检测中的多尺度问题,通过简单的网络连接改变,在基本不增加原有模型计算量的情况下,大幅度提升了小物体检测的性…

FPN详解

论文题目:Feature Pyramid Networks for Object Detection 论文链接:论文链接 论文代码:Caffe版本代码链接 一、FPN初探 1. 图像金字塔 图1 图像金字塔 图2 高斯金字塔效果 如上图所示,这是一个图像金字塔,做CV的你…

卷积神经网络——FPN(Feature Pyramid Networks)介绍

FPN(Feature Pyramid Networks):特征金字塔网络,是用来提取不同尺度特征图的,提供给后面的网络执行预测任务。 为什么需要FPN呢?简要介绍一下,在目标检测的网络中,要识别不同大小的物体是该网络实现检测的基…

详解FPN网络

目录 导读 摘要 简介 相关工作 FPN算法 FPN应用于RPN FPN应用于Fast RCNN 对比实验 FPN对RPN网络的影响 FPN对Fast RCNN网络的影响 总结 参考文献 导读 《Feature Pyramid Networks for Object Detection》这篇文章主要是用来解决Faster RCNN物体检测算法在处理多尺…

深度学习中的FPN详解

深度学习入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。 目录 一、FPN提出原因 二、FPN的参考思想 三、特征金字塔 四、FPN具体思路 一、FPN提出原因 卷积网络中,深层网…

CICD概念 k8s DevOps

概念 先看下docker官网给的相关文档 Continuous Integration (CI) and Continuous Delivery (CD) methodologies are key traits of a modern software development practice. Docker Enterprise Edition (Docker EE) can be a catalyst for this DevOps mindset, integrating …

Gitlab CICD配置runner

首先要安装gitlab-runner,安装过程略 1.进入Gitlab项目界面,点击侧边栏Settings->CD/CD→Runners Collapse→Specific runners,获得URL与token 2.登录装有gitlab-runner的电脑,命令行输入gitlab-runner register注册runner&am…

CICD与DevOps

CICD与DevOps 文章声明,本文选自网上关于CICD与DevOps的讲解综合,如有侵权,联系删除 什么是CI/CD 什么是持续集成(CI-Continuous integration) 持续集成是指多名开发者在开发不同功能代码的过程当中,可以频繁的将代码行合并到一…

【云原生-DevOps】企业级DevOps平台搭建及技术选型-CICD篇

又是开篇 上一篇文章我们大概分享了DevOps项目管理中怎么企业级搭建本篇文章主要介绍两个子系统【CICD、效能看板】 CICD系统 CI(Continuous Integration):指持续集成,它属于开发人员的自动化流程。持续集成是一种软件开发实践&…

CICD和K8S实战

部署流程 拉取镜像,用docker 部署harbor镜像仓库 harbor是一个docker私有镜像仓库。 1、创建项目 2、创建成员 3、为项目添加成员。 后续是jenkins往harbor上传镜像,所以还需要一台jenkins服务器。 向harbor上传镜像 业务服务器 用来最终测试cd的结果。…

CICD构建实验

CICD CICD是一个可以集部署、拉取、上传等于一体的架构环境,它支持一线进行部署,免去了人工一条条的进行部署环境的工作流程,大大降低了人力手工运维成本和出错率。 CICD的搭建需要至少三台服务器,他们分别监管着Harbor&#xff…

请问什么是 CICD

CI,Continuous Integration,持续集成。CD,Continuous Deployment,持续部署。CICD 一般合称,无需特意区分二者区别。从开发、测试到上线的过程中,借助于 CICD 进行一些自动化处理,保障项目质量。 CICD 与 git 集成在一起,可理解为服务器端的 git hooks: 当代码 push 到…

企业级生产环境CICD入门

代码上线方案 部署代码,就是把程序包,传到linux服务器上,然后运行。 以前都是手动上传。 合理化上线方案 上线之前需要备份。 大型企业上线制度和流程 代码上线解决方案注意事项 持续集成,持续交付,持续部署&#…

前端搭建CICD流程

用Docker-compose 安装gitlab、gitlab-runner 源码地址 如果您觉得有用请STAR 安装docker 如果有已安装旧版docker需要先卸载 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docke…

搭建CICD平台

** 搭建CICD平台 ** 1、主机准备。 2、安装前预配置。准备相应的系统配置与软件依赖。 3、执行安装。 4、安装后配置。添加相应的组件以及修改配置。如导入模板等。 一、主机准备 Centos7.2 配置:内存大于4G。(其中Jenkins占1.5G、Gitlab占2G&#xf…

什么是CICD

什么是CICD 一、简介二、持续集成(CI)三、持续交付(CD)四、持续部署(CD)五、下一步是什么? 一、简介 CI / CD的采用改变了开发人员和测试人员如何发布软件。 最初是瀑布模型,后来是…

CI/CD是什么

文章目录 前言CI/CD概念持续集成(Continuous integration,CI)持续交付(Continuous Delivery,CD)持续部署(Continuous Deployment,CD)CI/CD小结 CI/CD 工具CI/CD 配置文件…

CICD简介

简介 CICD 是 持续集成(Continuous Integration)持续交付和持续部署(Continuous Deployment)简称。指在开发过程中自动执行一系列从开发到部署的过程中,尽量减少人工的介入。 CI 持续集成 ​ 定义:频繁…

都在说CI/CD,到底什么是CI/CD

引入 这篇文章是自己工作多年对CI/CD的理解,纯属个人见解。 不想说太多概念性的东西,直接从技术人员实际能接触的过程来展开说说。另外我这篇只是想关注一些通用的流程,细节的不同这里不纠结。比如微服务的CI/CD和单体服务有些不同&#xf…