多重共线性问题的几种解决方法

article/2025/9/20 0:00:19

    在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1X2……Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。

    所谓多重共线性是指线性回归模型的解释变量之间由于存在精确相关关系或者高度相关关系而使模型评估失真或者不准确。这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:

1、保留重要解释变量,去掉次要或可替代解释变量

    自变量之间存在共线性,说明自变量所提供的信息是重叠的,可以删除不重要的自变量减少重复信息。但从模型中删去自变量时应该注意:从实际经济分析确定为相对不重要并从偏相关系数检验证实为共线性原因的那些变量中删除。如果删除不当,会产生模型设定误差,造成参数估计严重有偏的后果。

2、改变解释变量的形式

    改变解释变量的形式是解决多重共线性的一种简易方法,例如对于横截面数据采用相对数变量,对于时间序列数据采用增量型变量。

3、差分法

4、逐步回归分析

    逐步回归(Stepwise Regression)是一种常用的消除多重共线性、选取“最优”回归方程的方法。其做法是将逐个引入自变量,引入的条件是该自变量经F检验是显著的,每引入一个自变量后,对已选入的变量进行逐个检验,如果原来引入的变量由于后面变量的引入而变得不再显著,那么就将其剔除。引入一个变量或从回归方程中剔除一个变量,为逐步回归的一步,每一步都要进行F 检验,以确保每次引入新变量之前回归方程中只包含显著的变量。这个过程反复进行,直到既没有不显著的自变量选入回归方程,也没有显著自变量从回归方程中剔除为止。

5、主成份分析

主成分分析作为多元统计分析的一种常用方法在处理多变量问题时具有其一定的优越性,其降维的优势是明显的,主成分回归方法对于一般的多重共线性问题还是适用的,尤其是对共线性较强的变量之间。

6、偏最小二乘回归

7、岭回归

    岭回归估计是通过最小二乘法的改进允许回归系数的有偏估计量存在而补救多重共线性的方法,采用它可以通过允许小的误差而换取高于无偏估计量的精度, 因此它接近真实值的可能性较大。灵活运用岭回归法, 可以对分析各变量之间的作用和关系带来独特而有效的帮助。

8、增加样本容量

    多重共线性问题的实质是样本信息的不充分而导致模型参数的不能精确估计,因此追加样本信息是解决该问题的一条有效途径。但是,由于资料收集及调查的困难,要追加样本信息在实践中有时并不容易。


这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。

逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。具体方法分为两步:

第一步,先将被解释变量y对每个解释变量作简单回归:

对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。

第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:

1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。

2.如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。

3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。

下边我们通过实例来说明逐步回归分析方法在解决多重共线性问题上的具体应用过程。

具体实例

例1设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表1,请建立需求函数模型。

   表1  服装消费及相关变量调查数据

 

(1)设对服装的需求函数为

用最小二乘法估计得估计模型:

模型的检验量得分,R2=0.998,D·W=3.383,F=626.4634

    R2接近1,说明该回归模型与原始数据拟合得很好。由得出拒绝零假设,认为服装支出与解释变量间存在显著关系。

(2)求各解释变量的基本相关系数

上述基本相关系数表明解释变量间高度相关,也就是存在较严重的多重共线性。

(3)为检验多重共线性的影响,作如下简单回归:

各方程下边括号内的数字分别表示的是对应解释变量系数的t检验值。

观察以上四个方程,根据经济理论和统计检验(t检验值=41.937最大,拟合优度也最高),收入Y是最重要的解释变量,从而得出最优简单回归方程

(4)将其余变量逐个引入,计算结果如下表2:

表2 服装消费模型的估计


结果分析:

①在最优简单回归方程中引入变量Pc,使R2由0.9955提高到0.9957;根据经济理论分析,正号,负号是合理的。然而t检验不显著(),而从经济理论分析,Pc应该是重要因素。虽然Y与Pc高度相关,但并不影响收入Y回归系数的显著性和稳定性。依照第1条判别标准,Pc可能是“有利变量”,暂时给予保留。

②模型中引入变量L,R2由0.9957提高到0.9959,值略有提高。一方面,虽然Y与L,Pc与L均高度相关,但是L的引入对回归系数的影响不大(其中的值由0.1257变为0.1387,值由-0.0361变为-0.0345,变化很小);另一方面,根据经济理论的分析,L与服装支出C之间应该是正相关关系,即的符号应该为正号而非负号,依照第2条判别标准,解释变量L不必保留在模型中。

③舍去变量L,加入变量P0,使R2由0.9957提高到0.9980,R2值改进较大。、均显著(这三个回归系数的t检验值绝对值均大于),从经济意义上看也是合理的(服装支出C与Y,P0之间呈正相关,而与服装价格Pc之间呈负相关关系)。根据判别标准第1条,可以认为Pc、P0皆为“有利变量”,给予保留。

④最后再引入变量L,此时R2=0.9980没有增加(或几乎没有增加),新引入变量对其他三个解释变量的参数系数也没有产生多大影响,可以确定L是多余变量,根据判别标准第2条,解释变量L不必保留在模型中。

因此我们得到如下结论:回归模型为最优模型。

    通过以上案例的分析,我们从理论和实际问题两方面具体了解了逐步回归分析是如何对多重共线性问题进行处理的。事实上,一般统计软件如SPSS,在回归模型的窗口中都会提供变量逐步进入的选项,勾选后实际上就是选择了运用逐步回归的思想来构建回归模型。运用SPSS软件不需要我们懂得其背后的运行规律,然而作为分析师,了解并理解模型背后的理论知识,将更有助于我们理解模型、解释结论背后的内在含义,从而达到更好地分析问题的目的。

 


http://chatgpt.dhexx.cn/article/nf4k6BdZ.shtml

相关文章

多重共线性问题如何解决?

​ 一、多重共线性说明 多重共线性一般是指:如果有两个或者多个自变量高度相关(相关系数大于0.8),难以区分一个自变量对因变量的影响和作用,将自变量相关性产生的后果定义为多重共线性,一般提出多重共线性…

多重共线性如何分析?

判断标准 常见的直观判断方法共有四个,如下: (1)某些自变量的相关系数值较大(比如大于0.8)等,可以利用pearson相关系数检验法一般是利用解释变量之间的线性相关程度判断,一般标准是…

多元回归自变量存在共线性

多重线性回归要求各个自变量之间相互独立,不存在多重共线性。所谓多重共线性,是指自变量之间存在某种相关或者高度相关的关系,其中某个自变量可以被其他自变量组成的线性组合来解释。 医学研究中常见的生理资料,如收缩压和舒张压…

多重共线性

1.回归模型自变量彼此相关称为多重共线性,它给模型提供重复信息 2.多重共线性会造成模型不稳定,可能会得到无法解释的现象 3.检测共线性的方法通常有相关性分析,显著性检验和方差膨胀因子分析 4.处理共线性的方法通常有提前筛选变量&#xff…

多重共线性的影响、判定及消除的方法

目录 1 什么是多重共线性? 2 多重共线性的影响 3 共线性的判别指标(方差膨胀因子) 3.1 拟合优度 3.2 方差膨胀因子VIF 4 多重共线性处理方法 4.1 手动移除出共线性的变量 4.2 逐步回归法 4.2.1 向前法 4.2.2 后退法 4.2.3 逐步选…

如何处理多重共线性问题

一、说明 当回归模型中两个或者两个以上的自变量高度相关(比如相关系数大于0.7)时,则称为多重共线性。虽然在实际分析中,自变量高度相关是很常见的,但是在回归分析中存在多重共线性可能会导致一些问题,比如…

谈多重共线性

谈多重共线性 本文主要讨论古典假定中无多重共线性被违反的情况,主要情况包括多重共线性的实质和产生的原因、后果、检验方法及无多重共线性假定违反后的处置方法。 第一节 什么是多重共线性 一、多重共线性的含义 讨论多元线性回归模型的估计时,强调…

多重共线性详解

目录 解释变量与自变量,被解释变量与因变量 1、多重共线性的现象 2、出现的原因 3、判别标准 4、检验方法 5、多重共线性有什么影响 6、多重共线性处理方法 7、其他说明 8、多重共线性识别-python代码8.1、vif检验8.2 相关系数8.3 聚类 9、宏观把握共线性问题9.1、共…

浅谈共线性的产生以及解决方法(中篇——今生)

浅谈共线性的产生以及解决方法(中篇——今生) 上篇我们讲到共线性概念以及共线性问题存在时对模型的影响。那么如何对样本数据中存在的共线性问题进行诊断呢? 3 多重共线性的诊断方法 3.1 相关系数法 对于一个样本数据集,我们要了解解释变量&#xf…

共线性那些事儿

我们经常听说,建模时应当尽量避免共线性(collinearity),共线性会导致参数估计不稳定、模型不可靠等等。那么共线性究竟有多可怕?共线性具体会带来什么问题?共线性得到的模型是否真的不行?笔者通…

多元线性模型中共线性产生的原因解析

在很多书籍中谈到了共线性问题,作为多元统计中基本假设之一,却经常被违背,影响模型稳定性和统计power。在不少的论文中谈到了,国内的很多书籍往往一笔带过。因为,属于统计计算领域内容,非专业人士&#xff…

好好谈谈共线性问题

好好谈谈共线性问题 马东什么 算法工程师 8 人 赞同了该文章 共线性,即 同线性或同线型。统计学中,共线性即 多重共线性。 多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确 相关关系或高度相关关系而…

树莓派中SIM7600G-H 4G DONGLE模块使用记录(一)PPP拨号上网/4G上网

项目场景: 如何使用SIM7600系列的4G通信模块进行PPP网上拨号以实现4G通信,在讲解前,未搭建好树莓派远程连接桌面的读者可以先转向树莓派4B环境搭建电脑远程连接打开文件管理闪退(上)。 模块简介: SIM7600X 4G DONGLE是一款工业级…

Linux系统下使用4G模块EC20实现拨号上网

驱动的实现过程 实现4G功能分为两步,第一步内核能成功识别出该设备,第二步实现拨号上网.最后提一下自带的定位功能 一.添加内核USB驱动 这里直接使用内核已经存在的USB驱动,只需要让内核能识别出该USB设备,并自动加载驱动生成对应的/devUSB*设备节点 获取EC20的PID和VID 把模块…

4G模块适配与调试

笔记目录 RK平台4G模块适配1、识别VID、PID2、添加VID\PID到android的option驱动中3、插上sim卡,4G模块一定要接上天线4、根据安卓系统和安卓版本发给模块厂要求其提供ril库5、预置ril库6、在framework中添加根据pid和vid关联ril库的代码7、可以通过一下命令查看ril…

Linux 4G模块pppd拨号上网脚本解析

在编写脚本之前,要先安装好ppp相关驱动,pppd 已知pppd位于 /usr/sbin , chat 位于 /usr/sbin , options 位于 /etc/ppp 。 要编写脚本,就要切换目录到 /etc/ppp/peers,若没有peers目录则自行创建。因为是在/etc目录之下&#xf…

4G模块的使用

一、4G相关知识 4G是第四代通讯技术。能够传输高质量视频图像。4G的下载速度达100Mbps,比目前的拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。此外,4G可以在DSL和有线电视调…

4G模块使用总结

4G模块使用总结 一、APN名称 2G: 移动的CMWAP 联通的UNIWAP 移动的CMNET 联通的UNINET 3G/4G: 移动CMNET 联通3GNET 电信CTNET 二、模块信息参数获取 AT/r //检测串口通信状态 ATE设置回显功能 ATE0:回显关闭 ATE1:回显开启 ATCGMI 返回模块厂家信息 ATCGMM 返回模块型…

4G传输模块的功能应用

4G传输模块主要用在物联网中的数据传输方面,这种模块支持主动采集、多种协议、GPRS定位以及各种网络协议,并且接口丰富,还可以实时查看程序参数配置,接下来,安传物联的编辑就来为大家介绍一下这种常用的模块吧 一、主动…

同时挂载二维码模块与4G模块时,导致4G模块连不上网都是USB设备)

一、BUG现象 今天公司设备出现一个问题,在RK3399上的USB上插着三个设备,分别是4G模块、二维码模块与身份证模块,在这三个设备同时插在设备上时再开机,会出现4G模块连不上网络的情况,无论怎么插拔4G模块都无法联网。而…