BN 层原理解析

article/2025/10/6 19:08:53

1 训练数据为什么要和测试数据同分布?

看看下图,如果我们的网络在左上角的数据训练的,已经找到了两者的分隔面w,如果测试数据是右下角这样子,跟训练数据完全不在同一个分布上面,你觉得泛化能力能好吗?
这里写图片描述

2 为什么白化训练数据能够加速训练进程

如下图,训练数据如果分布在右上角,我们在初始化网络参数w和b的时候,可能得到的分界面是左下角那些线,需要经过训练不断调整才能得到穿过数据点的分界面,这个就使训练过程变慢了;如果我们将数据白化后,均值为0,方差为1,各个维度数据去相关,得到的数据点就是坐标上的一个圆形分布,如下图中间的数据点,这时候随便初始化一个w,b设置为0,得到的分界面已经穿过数据了,因此训练调整,训练进程会加快
这里写图片描述

3 什么是梯度爆炸

如果网络使用sigmod激活函数,误差在向前传递的时候,经过sigmod单元,需要乘sigmod的梯度,而sigmod的梯度最大是0.25,因此越向前传递,误差就越小了,这就是梯度消散,但是梯度爆炸是什么?注意误差在经过全连接或者卷积层时,也要乘以权重w,如果w都比较大,大过sigmod造成的减小,这样越往前误差就越来越大,梯度爆炸了!

4 为什么BN层可以加速网络收敛速度

原理如上面2类似,BN层的计算图如下面所示,x是输入数据,到xhat均值方差归一化,也就是类似2中白化的加速的原理,后面xhat到y其实就是普通的一个线性变换,类似全连接但是没有交叉,将这个线性变换和后面的网络看成一体的,是不是就跟2中情况一样了?如果没有BN层,x直接输入后面的网络,训练过程中x分布的变换必然导致后面的网络去调整学习以来适应x的均值和方差,映入了BN层,xhat是一个归一化的数据,代价就是网络中多了一个线性层y,但是前者带来的性能更加大,因此加速了。
这里写图片描述

后面想想,感觉还是有点不清楚,虽然xhat是个归一化分布,但是y不一定是啊,最终是y输入到子网络,对原网络不一定有效吧?这里怀疑真正对加速起作用的是xhat到y的变换,这种单独对维度的线性变换只是在全连接的基础上少了输入输出间的交叉连接,这种形式的变换可能非常有利于分布的调整,如果在网络输入最前端加入这样一层,那岂不是无需对输入进行归一化了?后面有时间进行验证。那是不是x到xhat的变换就可以去掉了呢?不是,x到xhat的变换作用是缓解梯度弥散,这一点可以看下下面一点

5 为什么BN层可以改善梯度弥散

下面xhat到x的梯度公式,可以表示为正常梯度乘一个系数a,再加b,这里加了个b,整体给梯度一个提升,补偿sigmod上的损失,改善了梯度弥散问题。
这里写图片描述
这里写图片描述

6 为什么BN层一般用在线性层和卷积层后面,而不是放在非线性单元后

原文中是这样解释的,因为非线性单元的输出分布形状会在训练过程中变化,归一化无法消除他的方差偏移,相反的,全连接和卷积层的输出一般是一个对称,非稀疏的一个分布,更加类似高斯分布,对他们进行归一化会产生更加稳定的分布。其实想想也是的,像relu这样的激活函数,如果你输入的数据是一个高斯分布,经过他变换出来的数据能是一个什么形状?小于0的被抑制了,也就是分布小于0的部分直接变成0了,这样不是很高斯了。


http://chatgpt.dhexx.cn/article/mfhsXF6U.shtml

相关文章

BN128曲线

1. 引言 BN系列椭圆曲线 E ( F p ) : y 2 x 3 b , 其 中 b ≠ 0 E(\mathbb{F}_p):y^2x^3b,其中b\neq 0 E(Fp​):y2x3b,其中b​0,由Paulo S. L. M. Barreto1 和 Michael Naehrig 在2005年论文 Pairing-Friendly Elliptic Curv…

【YOLO v4 相关理论】Normalization: BN、CBN、CmBN

一、Batch Normalization 论文:https://arxiv.org/pdf/1502.03167.pdf 源码: link. Batch Normalization是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。 个人认为…

Betaflight BN880 GPS 简单测试

Betaflight BN880 GPS 简单测试 1. 源由2. 窗台对比测试3. 开阔区域测试3.1 GPS安装位置3.1.1 BN880 GPS 机尾打印支架 安装位置3.1.2 BN880 GPS 机头固定 安装位置3.1.3 M8N GPS 机尾打印支架 安装位置 3.2 M8N模块历史记录3.3 BN880模块第一次(机尾安装&#xff0…

BN(Batch Normalization):批量归一化

现在的神经网络通常都特别深,在输出层像输入层传播导数的过程中,梯度很容易被激活函数或是权重以指数级的规模缩小或放大,从而产生“梯度消失”或“梯度爆炸”的现象,造成训练速度下降和效果不理想。 随着训练的进行,…

通俗理解BN(Batch Normalization)

1. 深度学习流程简介 1)一次性设置(One time setup) - 激活函数(Activation functions) ​ - 数据预处理(Data Preprocessing) ​ - 权重初始化(Weight Initialization&#xff0…

为什么BN?batch normalization的原理及特点

1 什么是BN? 数据归一化方法,往往用在深度神经网络中激活层之前。其作用可以加快模型训练时的收敛速度,使得模型训练过程更加稳定,避免梯度爆炸或者梯度消失。并且起到一定的正则化作用,几乎代替了Dropout 2 原理 B…

【深度学习基础知识 - 07】BN的原理和作用

Batch Normalization也是深度学习中的一个高频词汇,这篇文章将会对其做一个简单介绍。 目录 1. BN的原理2. BN的作用3. BN层的可学习参数4. infer时BN的处理5. BN的具体计算步骤以及公式6. BN和L2参数权重正则化的区别 1. BN的原理 BN就是在激活函数接收输入之前对…

什么是BN(Batch Normalization)

什么是BN(Batch Normalization)? 在之前看的深度学习的期刊里,讲到了BN,故对BN做一个详细的了解。在网上查阅了许多资料,终于有一丝明白。 什么是BN? 2015年的论文《Batch Normalization: Accelerating Deep Networ…

深度学习—BN的理解(一)

0、问题 机器学习领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。那BatchNorm的作用是什么呢?BatchNorm就是在深度神经…

Batch Normalization详解以及pytorch实验

Batch Normalization是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。通过该方法能够加速网络的收敛并提升准确率。在网上虽然已经有很多相关文章,但基本都是摆上论文中的公式泛…

Java参数校验validation和validator区别

Java参数校验validation和validator区别 1. 参数校验概述2. validation与validator区别3. validation注解说明4. validator注解说明5. 日期格式化说明6. 实现验证6.1 引入依赖6.2 代码实现6.3 实现验证 1. 参数校验概述 常见的业务开发中无可避免的会进行请求参数校验&#xf…

hibernate-validator

validator 简介各种注解好处 validator.validate方法业务逻辑代码中检查传入的参数时为传入的参数类型中各个属性添加注解NotNull、NotBlank、NotEmpty间的区别 简介 validator,翻译过来,就是“验证器”的意思。它是一种注解式参数校验,包名…

validator自定义校验注解及使用

validator自定义校验注解及使用 官方文档&#xff1a;https://docs.jboss.org/hibernate/validator/8.0/reference/en-US/html_single/#validator-customconstraints 用到依赖: <!--validator的依赖如果项目使用的springBoot的依赖可以不用再引入 hibernate-validator 因为…

spring之Validator

初步认识 spring数据验证核心类&#xff1a;①&#xff1a;Validator ②&#xff1a;Errors,两者之间的纽带是Validator中定义的validate方法。 public interface Validator {// 限定Validator的职责&#xff0c;不可能所有的校验全部交给一个Validator来做boolean supports(…

Hibernate-Validator的学习

Hibernate-Validator的学习 此教程基于黑马程序员Java品达通用权限项目&#xff0c;哔哩哔哩链接&#xff1a;https://www.bilibili.com/video/BV1tw411f79E?p49 1.hibernate-validator介绍 早期的网站&#xff0c;用户输入一个邮箱地址&#xff0c;需要将邮箱地址发送到服…

Hibernate Validator源码解析

一、引言 问题&#xff1a;在代码编写的过程中&#xff0c;数据值的校验在JavaEE三层架构&#xff08;展示层、业务层、数据访问层&#xff09;均有涉及&#xff0c;各层的校验需求又是不尽相同的&#xff0c;因此往往会伴随着代码冗余&#xff0c;重复的校验逻辑出现在三层代…

Hibernate Validator简介

亲爱的小伙伴们我来填坑啦&#xff0c;java中优雅的参数校验方法中的校验的实现原理。 1.前言 验证数据是发生在所有应用程序层&#xff08;从表示层到持久层&#xff09;的常见任务。通常在每一层中实现相同的验证逻辑&#xff0c;这既耗时又容易出错。为了避免重复这些验证&…

bootstrapValidator验证最大值最小值范围限制

录入该值的最大值与最小值 bootstrapValidator进行效验&#xff0c;使最小值不可大于最大值&#xff0c;最大值不可小于最小值 刚开始的验证还是没事的&#xff0c;符合正常的验证规则 再把不符合规则的最大值改变&#xff0c;现在最小值已经比最大值小了&#xff0c;但是最大…

class-validator中文教程

官方文档&#xff1a; https://www.npmjs.com/package/class-validator class-validator可以说是一个简化验证的依赖库 &#xff08;采用注释的方式进行校验&#xff09; 但是缺少中文文档和过程&#xff0c;以自己的理解和对官网文档的阅读进行整理输出。 它的好兄弟class-t…

Hibernate Validator 总结大全

背景 代码开发过程中&#xff0c;参数的有效性校验是一项很繁琐的工作&#xff0c; 如果参数简单&#xff0c;就那么几个参数&#xff0c;直接通过ifelse可以搞定&#xff0c;如果参数太多&#xff0c;比如一个大对象有100多个字段作为入参&#xff0c;你如何校验呢&#xff1…