【干货】卷积神经网络Alex-Net、VGG-Nets、Network-In-Network案例分析

article/2025/9/28 14:22:19

目录

Alex-Net 网络模型

VGG-Nets 网络模型

Network-In-Network


本文将以 Alex-Net、VGG-Nets、Network-In-Network 为例,分析几类经典的卷积神经网络案例。

在此请读者注意,此处的分析比较并不是不同网络模型精度的“较量”,而是希望读者体会卷积神经网络自始至今的发展脉络和趋势。

这样会更有利于对卷积神经网络的理解,进而举一反三,提高解决真实问题的能力。


Alex-Net 网络模型

Alex-Net 是计算机视觉领域中首个被广泛关注并使用的卷积神经网络,特别是 Alex-Net 在 2012 年 ImageNet 竞赛  中以超越第二名 10.9个百分点的优异成绩一举夺冠,从而打响了卷积神经网络乃至深度学习在计算机视觉领域中研究热潮的“第一枪”。

 

Alex-Net 由加拿大多伦多大学的 Alex Krizhevsky、Ilya Sutskever(G. E. Hinton 的两位博士生)和 Geoffrey E. Hinton 提出,网络名“Alex-Net”即 取自第一作者名。

关于 Alex-Net 还有一则八卦:由于 Alex-Net 划时代的意义,并由此开启了深度学习在工业界的应用。

2015 年 Alex 和 Ilya 两位作者连同“半个”Hinton 被 Google 重金(据传高达 3500 万美金)收买。

但为何说“半个”Hinton? 只因当时 Hinton 只是花费一半时间在 Google 工作,而 另一半时间仍然留在多伦多大学。

 

下图所示是 Alex-Net 的网络结构,共含五层卷积层和三层全连接层。其中,Alex-Net 的上下两支是为方便同时使用两片 GPU 并行训练,不过在第三层卷积和全连接层处上、下两支信息可交互。

由于两支网络完全一致, 在此仅对其中一支进行分析。下表列出了 Alex-Net 网络的架构及具体参数。

单在网络结构或基本操作模块方面,Alex-Net 的改进非常微小,构建网络的基本思路变化不大,仅在网络深度、复杂度上有较大优势。

                                                                                   图1 Alex-Net 网络结构 

Alex-Net 网络架构及参数

不过仍需指出 Alex-Net 的几点重大贡献,正因如此,Alex-Net 方可在整个卷积神经网络甚至连接主义机器学习发展进程中占据里程碑式的地位。

Alex-Net 首次将卷积神经网络应用于计算机视觉领域的海量图像数据集 ImageNet(该数据集共计1000 类图像,图像总数约 128 多 万张),揭示了卷积神经网络拥有强大的学习能力和表示能力。

另一方面,海量数据同时也使卷积神经网络免于过拟合。可以说二者相辅相成,缺一不可。自此便引发了深度学习,特别是卷积神经网络在计算机视觉领域中“井喷”式的研究。

利用 GPU 实现网络训练。在上一轮神经网络研究热潮中,由于计算资源发展受限,研究者无法借助更加高效的计算手段(如 GPU),这也较大程度地阻碍了当时神经网络的研究进程。

“工欲善其事,必先利其器”,在 Alex-Net 中,研究者借助 GPU 将原本需数周甚至数月的网络训练过程大大缩短至 5~6 天。

在揭示卷积神经网络强大能力的同时,这无疑也大大缩短了深度网络和大型网络模型开发研究的周期并降低了时间成本。缩短了迭代周期,正是得益于此,数量繁多、立意新颖的网络模型和应用才能像雨后春笋一般层出不穷。

一些训练技巧的引入使“不可为”变成“可为”,甚至是“大有可为”。如 ReLU 激活函数局部响应规范化操作为防止过拟合而采取的数据增广(data augmentation)和随机失活(dropout)等。

这些训练技巧不仅保证了模型性能,更重要的是为后续深度卷积神经网络的构建提供了范本。实际上,此后的卷积神经网络大体都遵循这一网络构建的基本思路。

局部响应规范化(LRN)要求对相同空间位置上相邻深度(adjacent depth)的卷积结果做规范化。

假设 adi,j 为第 d 个通道的卷积核在 (i, j) 位置处的输出结果(即响应),随后经过 ReLU 激活函数的作用,其局部响应规范化的结果 bdi,j 可表示为:

其中,n 指定了使用 LRN 的相邻深度卷积核数目,N 为该层所有卷积核数目。k、n、α、β 等为超参数,需通过验证集进行选择,在原始 Alex-Net中这些参数的具体赋值如上表所示。

使用 LRN 后,在 ImageNet 数据集上Alex-Net 的性能分别在 top-1 和 top-5 错误率上降低了 1.4% 和 1.2%;此外,一个四层的卷积神经网络使用 LRN 后,在 CIFAR-10 数据上的错误率也从 13% 降至 11%。

 

LRN 目前已经作为各个深度学习工具箱的标准配置,将 k、n、α、β等超参数稍做改变即可实现其他经典规范化操作。如当 “k = 0,n = N,α = 1,β = 0.5”时便是经典的 l2 规范化:


VGG-Nets 网络模型

VGG-Nets 由英国牛津大学著名研究组 VGG(VisualGeometryGroup) 提出,是 2014 年 ImageNet 竞赛定位任务 (localization task) 第一名和分类 任务第二名做法中的基础网络。

由于 VGG-Nets 具备良好的泛化性能,因而其在 ImageNet 数据集上的预训练模型(pre-trained model)被广泛应用于 除最常用的特征抽取 (feature extractor)外的诸多问题。

如物体候选框 (object proposal) 生成、细粒度图像定位与检索 (fine-grained object localization and image retrieval)、图像协同定位 (co-localization) 等。

 

以 VGG-Nets 中的代表 VGG-16 为例,下表列出了其每层具体参数信息。

可以发现,相比 Alex-Net,VGG-Nets 中普遍使用了小卷积核以及“保持输入大小”等技巧,为的是在增加网络深度 (即网络复杂度) 时确保各层输入大小随深度增加而不急剧减小。

同时,网络卷积层的通道数 (channel) 也从 3 → 64 → 128 → 256 → 512 逐渐增加。

VGG-16 网络架构及参数


Network-In-Network

Network-In-Network(NIN) 是由新加坡国立大学 LV 实验室提出的异于传统卷积神经网络的一类经典网络模型,它与其他卷积神经网络的最大差异是用多层感知机(多层全连接层和非线性函数的组合)替代了先前卷积网络中简单的线性卷积层,如下图所示。

我们知道,线性卷积层的复杂度有限,利用线性卷积进行层间映射也只能将上层特征或输入进行

“简单”的线性组合形成下层特征。而 NIN 采用了复杂度更高的多层感知机 作为层间映射形式,这一方面提供了网络层间映射的一种新可能。

另一方面增加了网络卷积层的非线性能力,使得上层特征可以更复杂地被映射到下层,这样的想法也被后期出现的残差网络和 Inception 等网络模型所借鉴。

                                                        图2 传统卷积模块(a)与 NIN 网络卷积模块(b)

同时,NIN 网络模型的另一个重大突破是摒弃了全连接层作为分类层的传统,转而改用全局汇合操作(global average pooling),如下图所示。

NIN最后一层共有 C 张特征图(feature map),分别对应分类任务的 C 个类别。全局汇合操作分别作用于每张特征图,最后将汇合结果映射到样本真实标 记。

可以发现,在这样的标记映射关系下,C 张特征图上的响应将很自然地分别对应到 C 个不同的样本类别,这也是相对先前卷积网络来讲,NIN 在模型可解释性上的一个优势。

                                                                             图3 NIN 网络模型整体结构

此示例中的 NIN 堆叠了三个多层感知机卷积层模块和一个全局汇合操作层作为分类层

作者:魏秀参,南京大学 LAMDA 研究所博士,主要研究领域为计算机视觉和机器学习。相关领域重要国际期刊和国际会议发表论文十余篇。担任 ICCV、CVPP、CVPR、ECCV、NIPS、IJCAI、AAAI 等国际会议 PC member。

来源:《解析深度学习:卷积神经网络原理与视界实践》,本书由周志华老师作序推荐:“市面上深度学习书籍已不少,但专门针对卷积神经网络展开,侧重实践有不失论释者尚不多见。本书基本覆盖了卷积神经网络实践所有涉及环节,作者交代的若干新的技巧亦可一观,读者在实践中或有见益。”


http://chatgpt.dhexx.cn/article/gwQwklSr.shtml

相关文章

2018年国内十大技术突破:22纳米光刻机、大型航天器回收

https://www.toutiao.com/a6639830026990649860/ 2018-12-28 08:11:39 盘点这一年的核心技术:22纳米光刻机、450公斤人造蓝宝石、0.12毫米玻璃、大型航天器回收、盾构机“弃壳返回”、远距离虹膜识别……哪一个不夺人眼球! 1 智能水刀削铁断金 10月份的…

AI的螺旋式上升?今日头条AI掌门人马维英离职,“重返”清华从事培育科研工作

2020-07-29 01:22:49 作者 | 蒋宝尚 编辑 | 丛 末 据媒体报道,字节跳动副总裁、人工智能实验室主任马维英离职,将到清华大学智能产业研究院任职,加入正在筹备该产业院的原百度总裁张亚勤团队。 对于马维英离职一事,字节跳动也做…

超全深度学习细粒度图像分析:项目、综述、教程一网打尽

在本文中,来自旷视科技、南京大学和早稻田大学的研究者对基于深度学习的细粒度图像分析进行了综述,从细粒度图像识别、检索和生成三个方向展开论述。此外,他们还对该领域未来的发展方向进行了讨论。 (CV)是用机器来理解…

机器学习防止模型过拟合的方法知识汇总

目录 LP范数L1范数L2范数L1范数和L2范数的区别DropoutBatch Normalization归一化、标准化 & 正则化Reference 其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的的一种手段或操作。在算法中使用正则化的目的是防止模型出现过拟合。…

一文读懂机器学习中的正则化

正则化是一种为了减小测试误差的行为(有时候会增加训练误差)。当我们用较为复杂的模型拟合数据时,容易出现过拟合现象,导致模型的泛化能力下降,这时我们就需要使用正则化,降低模型的复杂度。本文总结阐释了正则化的相关知识点,帮助大家更好的理解正则化这一概念。 目录 L…

漆远离职阿里加盟复旦!大牛纷纷回归学界,大厂AI名存实亡?

来源丨新智元 编辑丨小咸鱼 好困 【导读】蚂蚁金服原副总裁、AI团队负责人漆远已于近日离职,出任复旦大学「浩清」教授,复旦人工智能创新与产业研究院院长。将从事深度学习、强化学习等人工智能领域的前沿研究和应用。 那个支付宝背后的AI大牛&#xff0…

正则化方法归纳总结

作者丨Poll 来源丨https://www.cnblogs.com/maybe2030/p/9231231.html 编辑丨极市平台 本文仅用于学术分享,如有侵权请联系后台删文 导读 本文先对正则化的相关概念进行解释作为基础,后对正则化的方法进行了总结,帮助大家更加清晰的了解正则化方法。 阅…

阿里副总裁、达摩院自动驾驶负责人王刚离职!

转载自:新智元 | 编辑:桃子 好困 【导读】从学界「跨界」互联网,再转身去创业。这一年,他40岁,依然选择挑战自我。消息称,阿里副总裁、达摩院自动驾驶实验室负责人王刚已于近日离职。阿里,是他的…

机器学习防止模型过拟合方法总结

转自 | 小白学视觉,作者小白 文章仅用于学术分享,侵删 目录 LP范数L1范数L2范数L1范数和L2范数的区别DropoutBatch Normalization归一化、标准化 & 正则化Reference 其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种…

CV还要更热闹!旷视刚宣布4.6亿美元融资,商汤:新一轮年内完成

允中 发自 凹非寺 量子位 报道 | 公众号 QbitAI △ 商汤科技CEO徐立 你追我赶! 机器视觉(CV)领域热度还在急剧升温。 昨天,旷视科技(Face)刚完成了C轮4.6亿美元融资,刷新了AI公司全球单轮融资额纪录。 而这一纪录的保…

LaTeX 有哪些「新手须知」的内容?

孟晨 ,在 LaTeX 话题下写错 LaTeX 名字的,一律… 陈硕 等 137 人赞同 这是个好问题,虽然提问提得很大。不是很好答,权当抛砖引玉了。 天字第一号原则:不要到网上抄代码,尤其是似懂非懂的阶段。 除非代码的…

《解析深度学习》部分笔记

记录一些书里的知识点,摘自魏秀参的《解析深度学习-卷积神经网络原理与视觉实践》 第三章 卷积神经网络经典结构 1.在深度学习中,深度卷积神经网络呈现“分布式表示”,既“语义概念”到神经元是一个多对多映射。直观讲就是:每个语…

新型计算机离我们还有多远

作者:高如如,魏秀参 本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅《程序员》 自1946年ENIAC(Electronic Numerical Integrator And Calculator,即电子数字积分计算机)问世&am…

Must Know Tips/tricks in DNN

Must Know Tips/Tricks in Deep Neural Networks (byXiu-Shen Wei) 转载于http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that are composed of mult…

[读书笔录]解析卷机神经网络(魏秀参)——第二章

解析卷积神经网络——基础理论篇 第二章 卷机神经网络基本部件 2.1 “端到端”思想(end-to-end manner) 深度学习的一个重要思想即”端到端”的学习方式,属于表示学习的一种。整个学习流程并不进行人为的子问题划分,而是完全交…

[读书笔录]解析卷机神经网络(魏秀参)——第三章

#解析卷积神经网络——基础理论篇 第三章 卷机神经网络经典结构 3.1 CNN网络结构中的重要概念 ####感受野 感受野(receptive filed)原指听觉、视觉等神经系统中一些神经元的特性,即神经元只接受其所支配的刺激区域内的信号。 以单层卷积操作为例,如左…

[读书笔录]解析卷积神经网络(魏秀参)——第一章

解析卷积神经网络——基础理论篇 第一章 卷机神经网络基础知识 1.1发展历程 卷积神经网络发展历史中的第一件里程碑事件发生在上世纪60年代左右的神经科学中,1959 年提出猫的初级视皮层中单个神经元的“感受野”概念,紧接着于1962年发现了猫的视觉中枢…

如何看旷视南京负责人魏秀参跳槽高校工作?

链接:https://www.zhihu.com/question/404733616 编辑:深度学习与计算机视觉 声明:仅做学术分享,侵删 跳槽本是正常现象,之所以会在知乎引起讨论,说明其中有让大家值得关注的点。但我们吃瓜群众&#xff0c…

[阅读笔记]《解析卷积神经网络_深度学习实践手册》魏秀参著

书籍下载地址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf 这本书名虽然有实践两个字,但内容还是主要介绍在实践框架中涉及的基本概念、方法和技巧介绍,侧重于实践中的概念介绍并不是手把手告诉你如何在某平台上搭建一个卷积神经网络&a…

CVPR 2020评审结果放出,魏秀参博士教你如何rebuttal!!!

关注上方“深度学习技术前沿”,选择“星标公众号”, 资源干货,第一时间送达! 来源:知乎 作者:魏秀参 链接:https://zhuanlan.zhihu.com/p/104298923 近日,在此文章中,旷视…