什么是 ARIMA模型

article/2025/9/23 7:17:01

转自:https://blog.csdn.net/HHXUN/article/details/79858672

ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型。

1. ARIMA的优缺点

优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量。

缺点:

1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。

2.本质上只能捕捉线性关系,而不能捕捉非线性关系。

注意,采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

2. 判断是时序数据是稳定的方法。

严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间的(是关于时间的常量)。

判断的方法:

  1. 稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的方差,在时间轴上是趋于同一个稳定的值的。
  2. 可以使用Dickey-Fuller Test进行假设检验。(另起文章介绍)

3. ARIMA的参数与数学形式

ARIMA模型有三个参数:p,d,q。

  • p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项
  • d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。
  • q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

先解释一下差分: 假设y表示t时刻的Y的差分。

if d=0, yt=Ytif d=1, yt=Yt−Yt−1if d=2, yt=(Yt−Yt−1)−(Yt−1−Yt−2)=Yt−2Yt−1+Yt−2if d=0, yt=Ytif d=1, yt=Yt−Yt−1if d=2, yt=(Yt−Yt−1)−(Yt−1−Yt−2)=Yt−2Yt−1+Yt−2

ARIMA的预测模型可以表示为:

Y的预测值 = 常量c and/or 一个或多个最近时间的Y的加权和 and/or 一个或多个最近时间的预测误差。

假设p,q,d已知,

ARIMA用数学形式表示为:

ytˆ=μ+ϕ1∗yt−1+...+ϕp∗yt−p+θ1∗et−1+...+θq∗et−qyt^=μ+ϕ1∗yt−1+...+ϕp∗yt−p+θ1∗et−1+...+θq∗et−q

 

其中,ϕ表示AR的系数,θ表示MA的系数其中,ϕ表示AR的系数,θ表示MA的系数

4.ARIMA模型的几个特例

1.ARIMA(0,1,0) = random walk:

当d=1,p和q为0时,叫做random walk,如图所示,每一个时刻的位置,只与上一时刻的位置有关。

预测公式如下:

Yˆt=μ+Yt−1Y^t=μ+Yt−1

2. ARIMA(1,0,0) = first-order autoregressive model:

p=1, d=0,q=0。说明时序数据是稳定的和自相关的。一个时刻的Y值只与上一个时刻的Y值有关。

Yˆt=μ+ϕ1∗Yt−1.where, ϕ∈[−1,1],是一个斜率系数Y^t=μ+ϕ1∗Yt−1.where, ϕ∈[−1,1],是一个斜率系数

3. ARIMA(1,1,0) = differenced first-order autoregressive model:

p=1,d=1,q=0. 说明时序数据在一阶差分化之后是稳定的和自回归的。即一个时刻的差分(y)只与上一个时刻的差分有关。

yˆt=μ+ϕ1∗yt−1结合一阶差分的定义,也可以表示为:Yˆt−Yt−1=μ+ϕ1∗(Yt−1−Yt−2)或者Yˆt=μ+Yt−1+ϕ1∗(Yt−1−Yt−2)y^t=μ+ϕ1∗yt−1结合一阶差分的定义,也可以表示为:Y^t−Yt−1=μ+ϕ1∗(Yt−1−Yt−2)或者Y^t=μ+Yt−1+ϕ1∗(Yt−1−Yt−2)

4. ARIMA(0,1,1) = simple exponential smoothing with growth.

p=0, d=1 ,q=1.说明数据在一阶差分后市稳定的和移动平均的。即一个时刻的估计值的差分与上一个时刻的预测误差有关。

yˆt=μ+α1∗et−1注意q=1的差分yt与p=1的差分yt的是不一样的其中,yˆt=Yˆt−Yˆt−1, et−1=Yt−1−Yˆt−1,设θ1=1−α1则也可以写成:Yˆt=μ+Yˆt−1+α1(Yt−1−Yˆt−1)=μ+Yt−1−θ1∗et−1y^t=μ+α1∗et−1注意q=1的差分yt与p=1的差分yt的是不一样的其中,y^t=Y^t−Y^t−1, et−1=Yt−1−Y^t−1,设θ1=1−α1则也可以写成:Y^t=μ+Y^t−1+α1(Yt−1−Y^t−1)=μ+Yt−1−θ1∗et−1

5. ARIMA(2,1,2)

在通过上面的例子,可以很轻松的写出它的预测模型:

yˆt=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2也可以写成:Yˆt=μ+ϕ1∗(Yt−1−Yt−2)+ϕ2∗(Yt−2−Yt−3)−θ1∗(Yt−1−Yˆt−1)−θ2∗(Yt−2−Yˆt−2)y^t=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2也可以写成:Y^t=μ+ϕ1∗(Yt−1−Yt−2)+ϕ2∗(Yt−2−Yt−3)−θ1∗(Yt−1−Y^t−1)−θ2∗(Yt−2−Y^t−2)

6. ARIMA(2,2,2)

yˆt=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2Yˆt=μ+ϕ1∗(Yt−1−2Yt−2+Yt−3)+ϕ2∗(Yt−2−2Yt−3+Yt−4)−θ1∗(Yt−1−Yˆt−1)−θ2∗(Yt−2−Yˆt−2)y^t=μ+ϕ1∗yt−1+ϕ2∗yt−2−θ1∗et−1−θ2∗et−2Y^t=μ+ϕ1∗(Yt−1−2Yt−2+Yt−3)+ϕ2∗(Yt−2−2Yt−3+Yt−4)−θ1∗(Yt−1−Y^t−1)−θ2∗(Yt−2−Y^t−2)

7. ARIMA建模基本步骤

  1. 获取被观测系统时间序列数据;
  2. 对数据绘图,观测是否为平稳时间序列;对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列;
  3. 经过第二步处理,已经得到平稳时间序列。要对平稳时间序列分别求得其自相关系数ACF 和偏自相关系数PACF,通过对自相关图和偏自相关图的分析,得到最佳的阶层 p 和阶数 q
  4. 由以上得到的d、q、p,得到ARIMA模型。然后开始对得到的模型进行模型检验。

 


http://chatgpt.dhexx.cn/article/eWOFa6Na.shtml

相关文章

时间序列预测——ARIMA(差分自回归移动平均模型)(1))

时间序列预测——ARIMA(差分自回归移动平均模型) ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;I为差分,d为使之成为平稳序列所做的差分次数&#…

ARIMA乘法季节模型

目录 ARIMA乘法季节模型 例题1 例题 2 例题3 ARIMA乘法季节模型 序列的季节效应、长期趋势效应和随机波动之间有着复杂的相互关联性,简单的季节模型不能充分地提取其中的相关关系,这时常采用乘积季节模型。 例题1 我国1949-2008年年末人口总数(单…

AR、MA、ARMA和ARIMA模型------时间序列预测

ARMA模型的全称是自回归移动平均模型,它是目前最常用的拟合平稳序列的模型。它又可以细分为AR模型、MA模型和ARMA三大类。都可以看做是多元线性回归模型。 AR模型 具有如下结构的模型称为阶自回归模型,简记为。 即在t时刻的随机变量的取值是前期的多元…

ARIMA模型(一)定义与介绍

了解ARIMA模型,就需要先了解数据的一个平稳性。 1. 平稳性: 平稳性就是要求经由样本时间序列所得到的拟合曲线,在未来的一段时间内仍能顺着现有状态“惯性”地延续下去;平稳性要求序列的均值和方差不发生明显变化; 方差越大,数据波动越大,方差计算公式如下式所示…

ARIMA模型原理及实现

https://www.jianshu.com/p/305c4961ee06 1、数据介绍 再介绍本篇的内容之前,我们先来看一下本文用到的数据。本文用到的中国银行股票数据下载:http://pan.baidu.com/s/1gfxRFbH,提取码d3id。 我们先来导入一下我们的数据,顺便…

时间序列预测,非季节性ARIMA及季节性SARIMA

Python 3中使用ARIMA进行时间序列预测的指南 在本教程中,我们将提供可靠的时间序列预测。我们将首先介绍和讨论自相关,平稳性和季节性的概念,并继续应用最常用的时间序列预测方法之一,称为ARIMA。 介绍 时间序列提供了预测未来价…

时间序列(四)ARIMA模型与差分

ARIMA模型 平稳性: 平稳性就是要求经由样本时间序列所得到的拟合曲线 在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去 平稳性要求序列的均值和方差不发生明显变化 严平稳与弱平稳: 严平稳:严平稳表示的分布不随时间的改变而改…

数学建模之时间序列预测(ARIMA)

Auto-TS 自动化时间序列预测 1、Auto-TS介绍 Auto-TS 是 AutoML 的一部分,它将自动化机器学习管道的一些组件。这自动化库有助于非专家训练基本的机器学习模型。 是一个开源 Python 库,主要用于自动化时间序列预测。它将使用一行代码自动训练多个时间…

【时间序列预测-ARIMA模型】

转载 https://blog.csdn.net/qq_35495233/article/details/83514126 参考【概念】https://blog.csdn.net/TU_JCN/article/details/88130820 【实战】https://www.cnblogs.com/54hys/p/10127055.html 另外,重点参考https://www.jianshu.com/p/4130bac8ebec 了解ARIMA…

ARIMA的参数与数学形式

什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model)。也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型。 1. ARIMA的优缺点 优点&a…

ARIMA模型

时间序列分析分为两大类:频域分析和时域分析。频域分析也称为谱分析,是一种非常有用的纵向数据分析方法。时域分析主要关心从序列值之间的相关关系对时间序列发展规律。 在时域分析里,生成时间序列数据的随机过程按照统计规律的特征是否随着时…

Arima相关概念

https://www.cnblogs.com/bradleon/p/6832867.html https://www.cnblogs.com/bradleon/p/6827109.html 平稳性:就是要求经由样本时间序列所得到的拟合曲线在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去。平稳性要求序列的均值和方差不发生明显变化 严平…

2019年最新手游脚本开发教程

2019年最新手游脚本开发教程 链接:https://pan.baidu.com/s/1JqZBWhXes4-kUKEgAFHpcQ 提取码:xp0f 复制这段内容后打开百度网盘手机App,操作更方便哦

html游戏脚本,网页游戏脚本软件道

----3.增加多媒体特性 Command对象 Command对象的主要目的是执行参数化的存储过程 JAR will be empty - no content was marked for inclusion! 例子: Col1=CustomerNumberTextWidth10 Col2=CustomerNameTextWidth30 该例给出了方…

前端搭建打字通游戏(内附源码)

The sand accumulates to form a pagoda ✨ 写在前面✨ 打字通功能介绍✨ 页面搭建✨ 样式代码✨ 功能实现 ✨ 写在前面 上周我们实通过前端基础实现了名言生成器,当然很多伙伴再评论区提出了想法,后续我们会考虑实现的,今天还是继续按照我们…

Android+按键精灵代码,安卓按键精灵怎么编写脚本 编写脚本教程

按键精灵评分: 大小:23.96MB 语言:简体中文 授权:免费版下载地址 在安卓上使用按键精灵,可以模拟我们抢红包、抢火车票,而且连自动签到也是可以的,只要我们编写好脚本就可以了。那么安卓按键精灵…

手游问道服务器维护到几点,问道手游10月27日更新什么?维护到几点?

问道手游10月27日更新什么内容?问道手游10月27日维护到几点?相信很多玩家想知道吧,接下来就跟随小编一起来看看吧,希望对大家有所帮助。 10月27号更新了什么内容 各位亲爱的道友: 为保证服务器的运行稳定和服务质量&am…

记一次小白的手游脚本破解过程及难题

最近因为一直有玩一个网游,发现一款直接内置进手游lua脚本的辅助。于是来了兴趣,开始研究。 这是那款辅助的安装包, 里面的文件是这样的,妈呀连个后缀都没有我要怎么弄,因为我也是个半懂不懂的小白,于是开始…

问道手游服务器维护,问道手游公测服务器版本更新维护公告

小编给大家带来了问道手游公测服务器版本更新维护公告,想了解更多问道手游攻略,敬请关注18183问道手游专区。 各位亲爱的道友: 为保证服务器的运行稳定和服务质量,《问道》手游所有公测服务器(内测专区除外)将于2017年03月02日04:…

问道手游服务器维护,问道手游停服维护公告

问道手游停服维护公告,问道手游是一款大型Q版MMORPG回合制手游,问道手游将在11月24日上午8点进行一次停服维护,期间将对之前测试时出现的一些问题进行修复,预计维护时间为一个小时,请玩家们注意开服时间。 问道手游海报…