01. 数据集
我们首先需要从互联网上获取包含墙壁裂缝的图像(URL格式)数据。总共包含1428张图像:其中一半是新的且未损坏的墙壁;其余部分显示了各种尺寸和类型的裂缝。
第一步:读取图像,并调整大小。
images = []
for url in tqdm.tqdm(df['content']):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img = img.resize((224, 224))
numpy_img = img_to_array(img)
img_batch = np.expand_dims(numpy_img, axis=0)
images.append(img_batch.astype('float16'))
images = np.vstack(images)
从下面的示例中您可以看到,在我们的数据中显示了不同类型的墙体裂缝,其中一些对我来说也不容易识别。
图例
02. 机器学习模型
我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损