射频回波损耗、反射系数、电压驻波比、S参数的含义与关系

article/2025/9/17 2:33:12


以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。

 

在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。

 

对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。

需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。

回波损耗、反射系数、电压驻波比,、S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下:

回波损耗(Return Loss):入射功率/反射功率, 为dB数值

反射系数(Г):反射电压/入射电压, 为标量

电压驻波比(Voltage Standing Wave Ration): 波腹电压/波节电压

S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。

 

四者的关系:
VSWR=(1+Г)/(1-Г) (1)
S11=20lg(Г) (2)
RL=-S11 (3)

以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。


回波损耗与VSWR之间的转换关系,读者可以采用上面的式子1和2来手动计算。

 

一、反射系数/行波系数/驻波比/回波损耗

 

1、定义 

 

天馈线匹配:阻抗匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个均出于习惯。通常用的较多的是驻波比和回波损耗。

比: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5。

回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。

 

 

 

2、表达公式 

 

驻波比:

S=电压最大值/电压最小值
=Umax/Umin

行波系数:

K=电压最小值/电压最大值=Umin/Umax
=(入射波振幅-反射波振幅)/(反射波振幅+入射波振幅)

反射系数:

P=反射波振幅/入射波振幅
=(传输线特性阻抗-负载阻抗)/(传输线特性阻抗+负载阻抗)
即P=︱(Zb-Za)/(Zb+Za)︱ 取绝对值

回波损耗:

L=1/P=︱(Zb+Za)/(Zb-Za)︱

驻波比与反射系数:

S=(1+P)/(1-P)

 

二、电压驻波比(VSWR)

 

1、VSWR 

 

VSWR翻译为电压驻波比(Voltage Standing Wave Ratio),一般简称驻波比。 电磁波从甲介质传导到乙介质,会由于介质不同,电磁波的能量会有一部分被反射,从而在甲区域形成“行驻波”。 电压驻波比,指的就是行驻波的电压峰值与电压谷值之比,此值可以通过反射系数的模值计算: VSWR=(1+反射系数模值)/(1-反射系数模值)。 而入射波能量与反射波能量的比值为 1:(反射系数模的平方)

从能量传输的角度考虑,理想的VSWR为 1:1 ,即此时为行波传速状态,在传输线中,称为阻抗匹配;最差时VSWR无穷大,此时反射系数模为1,为纯驻波状态,称为全反射,没有能量传输。

由上可知,驻波比越大,反射功率越高,传输效率越低。

 

 

 

2、电压驻波比(VSWR)

 

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 
 
如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表? 

 

3、VSWR及标称阻抗

发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。   


如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 

 

4、VSWR不是1时,比较VSWR的值没有意义 

 

正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。   

VSWR都=1不等于都是好天线 

影响天线效果的最重要因素:谐振让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。   

我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。 
 
天线也是同样,要使天线发射的电磁场最强,一是发射频率必须和天线的固有频率相同,二是驱动点要选在天线的适当位置。如果驱动点不恰当而天线与信号频率谐振,效果会略受影响,但是如果天线与信号频率不谐振,则发射效率会大打折扣。   

所以,在天线匹配需要做到的两点中,谐振是最关键的因素。 

在早期的发信机,例如本期介绍的71型报话机中,天线电路只用串联电感、电容的办法取得与工作频率的严格谐振,而进一步的阻抗配合是由线圈之间的固定耦合确定死的,在不同频率下未必真正达到阻抗的严格匹配,但是实际效果证明只要谐振就足以好好工作了。 
 
因此在没有条件做到VSWR绝对为1时,业余电台天线最重要的调整是使整个天线电路与工作频率谐振。

 

5、天线的驻波比和天线系统的驻波比 

 

天线的VSWR需要在天线的馈电端测量。但天线馈电点常常高悬在空中,我们只能在天线电缆的下端测量VSWR,这样测量的是包括电缆的整个天线系统的VSWR。当天线本身的阻抗确实为50欧姆纯电阻、电缆的特性阻抗也确实是50欧姆时,测出的结果是正确的。 
 
当天线阻抗不是50欧姆时而电缆为50欧姆时,测出的VSWR值会严重受到天线长度的影响,只有当电缆的电器长度正好为波长的整倍数时、而且电缆损耗可以忽略不计时,电缆下端呈现的阻抗正好和天线的阻抗完全一样。但即便电缆长度是整倍波长,但电缆有损耗,例如电缆较细、电缆的电气长度达到波长的几十倍以上,那么电缆下端测出的VSWR还是会比天线的实际VSWR低。 
 
所以,测量VSWR时,尤其在UHF以上频段,不要忽略电缆的影响。 

 

 

6、不对称天线 

 

我们知道偶极天线每臂电气长度应为1/4波长。那么如果两臂长度不同,它的谐振波长如何计算?是否会出现两个谐振点? 
 
如果想清了上述琴弦的例子,答案就清楚了。系统总长度不足3/4波长的偶极天线(或者以地球、地网为镜象的单臂天线)只有一个谐振频率,取决于两臂的总长度。两臂对称,相当于在阻抗最低点加以驱动,得到的是最低的阻抗。两臂长度不等,相当于把弓子偏近琴马拉弦,费的力不同,驱动点的阻抗比较高一些,但是谐振频率仍旧是一个,由两臂的总长度决定。如果偏到极端,一臂加长到1/2波长而另一臂缩短到0,驱动点阻抗增大到几乎无穷大,则成为端馈天线,称为无线电发展早期用在汽艇上的齐柏林天线和现代的1/2波长R7000垂直天线,当然这时必须增加必要的匹配电路才能连接到50欧姆的低阻抗发射机上。 
 
偶极天线两臂不对称,或者两臂周围导电物体的影响不对称,会使谐振时的阻抗变高。但只要总电气长度保持1/2波长,不对称不是十分严重,那么虽然特性阻抗会变高,一定程度上影响VSWR,但是实际发射效果还不至于有十分明显的恶化。 

 

7、QRPer不必苛求VSWR 

 

当VSWR过高时,主要是天线系统不谐振时,因而阻抗存在很大电抗分量时,发射机末级器件可能需要承受较大的瞬间过电压。早期技术不很成熟时,高VSWR容易造成射频末级功率器件的损坏。因此,将VSWR控制在较低的数值,例如3以内,是必要的。 
 
现在有些设备具有比较完备的高VSWR保护,当在线测量到的VSWR过高时,会自动降低驱动功率,所以烧末级的危险比20年以前降低了很多。但是仍然不要大意。   

 

不过对于QRP玩家讲来,末级功率有时小到几乎没有烧末级的可能性。移动运用时要将便携的临时天线调到VSWR=1却因为环境的变幻而要绞尽脑汁。这时不必太丧气。1988-1989年笔者为BY1PK试验4W的CW/QRP,使用长度不足1.5米的三楼窗帘铁丝和长度为1.5米左右的塑料线做馈线,用串并电容的办法调到天线电流最大,测得VSWR为无穷大,却也联到了JA、VK、U9、OH等电台。后来做了一个小天调,把VSWR调到 1,但对比试验中远方友台报告说,VSWR的极大变化并没有给信号带来什么改进,好像信号还变弱了些,可能本来就微弱的信号被天调的损耗又吃掉了一些吧。 
 
总之,VSWR道理多多。既然有了业余电台,总是免不了和VSWR打交道,不妨多观察、积累、交流各自的心得吧。 

 

三、天线系统和输出阻抗 

 

天线系统和输出阻抗为50欧的发信机的匹配条件是天线系统阻抗为50欧纯电阻。要满足这个条件,需要做到两点:第一,天线电路与工作频率谐振(否则天线阻抗就不是纯电阻);第二,选择适当的馈电点。 

 

一些国外杂志文章在介绍天线时经常给出VSWR的曲线。有时会因此产生一种错觉,只要VSWR=1,总会是好天线。其实,VSWR=1只能说明发射机的能量可以有效地传输到天线系统。但是这些能量是否能有效地辐射到空间,那是另一个问题。一副按理论长度作制作的偶极天线,和一副长度只有1/20的缩短型天线,只要采取适当措施,它们都可能做到VSWR=1,但发射效果肯定大相径庭,不能同日而语。做为极端例子,一个50欧姆的电阻,它的VSWR十分理想地等于1,但是它的发射效率是0。 
 
而如果VSWR不等于1,譬如说等于4,那么可能性会有很多:天线感性失谐,天线容性失谐,天线谐振但是馈电点不对,等等。在阻抗园图上,每一个VSWR数值都是一个园,拥有无穷多个点。也就是说,VSWR数值相同时,天线系统的状态有很多种可能性,因此两根天线之间仅用VSWR数值来做简单的互相比较没有太严格的意义。 

天线VSWR=1说明天线系统和发信机满足匹配条件,发信机的能量可以最有效地输送到天线上,匹配的情况只有这一种。


http://chatgpt.dhexx.cn/article/bDtZZbCi.shtml

相关文章

【回波损耗(dB)和电压驻波比(VSWR)之间的关系】

回波损耗(dB)和电压驻波比(VSWR)之间的关系 反射系数&#xff08;Г / Rho&#xff09; Г&#xff1d;反射波振幅/入射波振幅 &#xff1d;(传输线特性阻抗-负载阻抗) / (传输线特性阻抗负载阻抗) 回波损耗( RL ) 回波损耗&#xff1a; 回波损耗&#xff0c;又称为反射损…

RF(射频) - VSWR(电压驻波比)

VSWR代表电压驻波比&#xff08;Voltage Standing Wave Ratio&#xff09;。要完全理解这个术语&#xff0c;你需要知道什么是“驻波”。 你可能已经在高中物理课上学到了驻波。只要刷新你的想法&#xff0c;让我解释一下驻波是什么。 假设具有相同波长的两个波沿相反方向传播…

天线参数-自用1

天线参数 1丶 天线谐振频率 Resonance Frequency 2丶驻波比 指的是行驻波的电压波腹值和电压波节值之比 2.1 驻波 驻波即两个反方向波的合成波形&#xff0c;该合成波相位不变&#xff0c;幅度变化&#xff0c;节点位置&#xff08;值 0&#xff09;不会发生变化。 幅度最大…

内联函数(inline)总结

1&#xff1a;定义&#xff1a; 它们看起来象函数&#xff0c;运作起来象函数&#xff0c;比宏(macro)要好得多&#xff0c;使用时还不需要承担函数调用的开销。当内联一个函数时&#xff0c;编译器可以对函数体执行特定环境下的优化工作。这样的优化对"正常"的…

【C++】内联函数理解

内联函数 内联函数的使用是对于C语言中宏函数的一种改进&#xff0c;他继承了宏的优点并避免了宏的缺点。 宏的优点&#xff1a;a. 代码复用性高 b. 宏函数减少栈帧建立&#xff0c;提高效率 宏的缺点&#xff1a;a. 可读性差 b. 没有类型安全检查 c. 不方便调试 C基本不再建议…

在什么情况下方法调用会被内联?

写在前面 本文隶属于专栏《100个问题搞定Java虚拟机》&#xff0c;该专栏为笔者原创&#xff0c;引用请注明来源&#xff0c;不足和错误之处请在评论区帮忙指出&#xff0c;谢谢&#xff01; 本专栏目录结构和文献引用请见100个问题搞定Java虚拟机 解答 方法内联有许多规则。…

【C++】 内联函数详解(搞清内联的本质及用法)

目录 一.什么是内联函数 1.直观上定义&#xff1a; 2.更深入的思考&#xff1a; 二.为什么使用内联函数 1.为什么要代替部分宏定义 2.普通函数频繁调用的过程消耗栈空间 3.更深入的思考 三.内联函数和编译过程的相爱相杀 四.内联函数怎么用&#xff0c;在哪儿用&#…

[C++] 内联函数inline 以及 auto关键字 -- C++入门(4)

本篇文章主要包括内联函数和auto关键字。其中&#xff0c;内敛函数包括概念&#xff0c;特性等&#xff1b;auto关键字的使用规则&#xff0c;使用场景等。 目录 1.内敛函数 1.1问题引入&#xff1a; 1.2内联函数的概念 1.3内敛函数的特性 2.auto关键字 2.1auto简介 2.2 auto的…

Windows误删注册表恢复方法

昨天不小心把注册表给删了,期间一直找解决方法,因为没有usb等重装工具... 我把注册表的HKEY_LOCAL_MACHINE\software这个重要的东西给误删了 ---结果就是软件打不开.就连删除东西都没用,自带的cmd什么的系统工具打不开... 关机重启问题更严重了,直接蓝屏,但是还好,开机的时候…

Linux 误删文件恢复命令及方法

你知道的越多&#xff0c;不知道的就越多&#xff0c;业余的像一棵小草&#xff01; 你来&#xff0c;我们一起精进&#xff01;你不来&#xff0c;我和你的竞争对手一起精进&#xff01; 编辑&#xff1a;业余草 http://r6d.cn/JzNf 推荐&#xff1a;https://www.xttblog.com/…

win10误删的注册表能还原吗_win10自带注册表恢复方法 win10注册表误删如何修复...

系统注册表&#xff0c;是计算机中一个很重要的部件&#xff0c;没有人可以保证自己能记住所有的注册表项&#xff0c;如果不小心让注册表被修改或者其他原因让注册表失效的时候&#xff0c;我们就可以通过cmd对注册表进行恢复&#xff0c;下面小编就为大家介绍win10自带注册表…

成功恢复 Linux 系统中已删除的文件

点击关注公众号&#xff0c;回复“1024”获取2TB学习资源&#xff01; 当用户意外地删除了一个仍然需要的文件时&#xff0c;大多数情况下&#xff0c;是没有简便的方法可以重新找回或重建这个文件。不过&#xff0c;幸运的是文件是可以通过一些方法恢复的。当用户删除了一个文…

windows注册表操作——备份,还原注册表,清除注册表卸载残留信息

注册表包含在操作过程中Windows不断引用的信息&#xff0c;例如每个用户的配置文件、计算机上安装的应用程序以及每个用户可以创建的文档类型、文件夹和应用程序图标的 属性表 设置、系统上存在的硬件以及所使用的端口。 序言 注册表是Microsoft Windows中的一个重要的数据库…

Linux下达梦误删除文件后恢复步骤

目录 数据文件恢复1.测试环境准备2.删除数据文件3.恢复步骤4.使用限制5.官方资料 redo日志恢复1. 删除redo日志2.启动数据库3.查看建库参数4.初始化新实例5.拷贝redo文件6.修改db_magic值7.启动数据库8.错误示范9.迁移数据 官方社区 数据文件恢复 1.测试环境准备 1.1准备好测…

windows注册表恢复方法

如果可以进入安全模式&#xff0c;您可以在安全模式内调用命令提示符输入命令修复一下系统组件。 在管理员命令提示符下键入以下命令&#xff1a; Dism /Online /Cleanup-Image /ScanHealth 这条命令将扫描全部系统文件并和官方系统文件对比&#xff0c;扫描计算机中的不一致…

linux环境下恢复rm误删的文件

文章目录 前言rm之后还有救吗使用foremost找回文件使用extundelete找回文件 预防误删引发的事故总结 前言 一提到在 linux 环境下删除文件&#xff0c;那绝对离不开 sudo rm -rf /* 这个梗&#xff0c;每次看到这个命令&#xff0c;我都想到一幅恶搞的图片&#xff1a; 这个『…

如何恢复 Linux 系统下被删除的文件 ?

丢失数据是任何用户都可能经历的最令人不安和痛苦的经历之一。一旦珍贵数据被删除或丢失&#xff0c;就再也找不不回来通常会引发焦虑&#xff0c;让用户感到无助。值得庆幸的是&#xff0c;有几个工具可以用来恢复 Linux 机器上被删除的文件。我们尝试了一些数据恢复工具&…

入门版Linux上恢复误删除的文件

一、被删除的文件正在被进程使用&#xff1a; 当某个文件正在被某个程序使用时&#xff0c;linux针对该文件有回两个计数器&#xff1a; i_count计数器&#xff1a;该文件可能被多个进程使用&#xff0c;每一个进程使用该文件&#xff0c;i_count数值都会加1。反之&#xff0…

不小心误删注册表exe,所有exe程序无法运行

首先我陈述下误删的原因吧&#xff0c;与其说是误删不如说就是自己有 意删除的&#xff0c;电脑Windows7&#xff0c;我在安装CASS10.1的时候&#xff0c;由于一个补丁程序始终不能运行&#xff0c;弹框显示说CASS10.1.6补丁.exe不是有效的Win32应用程序。然而我去寻找解决办法…

如何恢复Linux中的误删文件

写在前面的话 在开始教程之前我有必要提醒大家&#xff0c;使用窗口管理器&#xff08;GUI&#xff09;删除文件和使用命令行工具&#xff08;CLI&#xff09;删除文件这两种方法之间是有区别的。 当我们使用窗口管理器来删除文件时&#xff0c;我们仅仅只是将文件从某个目录移…