图像金字塔和高斯金字塔

article/2025/8/15 4:18:03

一:图像金字塔

        图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。图像金字塔实际上是一张图片在不同尺度下的集合,即原图的上采样和下采样集合。金字塔的底部是高分辨率图像,而顶部是低分辨率图像。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低

生成图像金字塔主要包括两种方式:向下取样向上取样

向上采样:(PyrUp)

1、将图像的行和列都扩大为原图的2倍,其中偶数行用0填充
2、用与下采样相同的高斯核(乘4)对扩充后的图进行卷积
如上步骤,上采样后图片扩大为原图的4倍

向下采样:(PyrDown)

1、用高斯核(高斯滤波)对图像进行卷积
2、将卷积结果中的偶数行、列都去掉
如上步骤,下采样结果为原图大小的1/4

        这里的向下与向上采样,是对图像的尺寸而言的(和金字塔的方向相反),向上就是图像尺寸加倍,向下就是图像尺寸减半。而如果我们按上图中演示的金字塔方向来理解,金字塔向上图像其实在缩小,这样刚好是反过来了。

 图像金字塔分为:高斯图像金字塔拉普拉斯图像金字塔

1.1高斯图像金字塔

        高斯金字塔是通过高斯平滑和亚采样获得一些列下采样图像,也就是说第K层高斯金字塔通过平滑、亚采样就可以获得K+1层高斯图像,每层是按从下到上编号的。

1.2拉普拉斯图像金子塔

        前面提到的均是高斯金字塔(使用高斯核),下面介绍拉普拉斯(Laplacian) 金字塔拉普拉斯(Laplacian) 金字塔是在高斯金字塔的基础上新的金字塔。

下面是拉普拉斯金字塔的表达式:

L_{i}=G_{i} - PyrUp(PyrDown(G_{i+1}))

其中G_{i}是原始图像,L_{i}是拉普拉斯金字塔图像,PyrUp和PyrDown是上采样和下采样过程,是Opencv中的函数。

下面从图像上直观的理解一下:

从上图可以看出,图像先通过高斯滤波平滑处理,然后下采样(PyrDown)得到高斯金字塔。然后用高斯金子塔上一层的图像减去高斯金字塔下一层图像上采样(PyrUp)得到的图像,这样便得到拉普拉斯金字塔图像了。

也就是说,拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。保留的是残差!为图像还原做准备!

注意:

        本文说的是一种比较老的尺度表示方法是图像金字塔。金字塔是结合上下采样操作和平滑操作的一种图像表示方式。它的一个很大的好处是,自下而上每一层的像素数都不断减少,这会大大减少计算量;而缺点是自下而上金字塔的量化变得越来越粗糙,而且速度很快。(需要强调的是,这里的金字塔构造方法和小波金字塔的构造方法是类似的,对某一层的图像进行平滑之后,再做降采样,平滑目的是为了降采样后的像素点能更好的代表原图像的像素点,与多尺度表示中的平滑完全不是一个目的) ,这和SIFT中的图像金子塔不一太样,SIFT中的图像金字塔每一层有很多图像,不止一副图像。

 二:特征金字塔

特征金字塔是用于检测不同尺度的对象的识别系统中的基本组件。其提出是为了解决小目标随着下采样信息丢失,目标检测精度不高的问题。

FPN由自下而上和自上而下两部分构成.

自下而上的就是传统的卷积网络做特征提取,随着卷积的深入,空间分辨率减少,空间信息丢失.但是高级语义信息被更多地检测到.

自下而上的就是不断的上采样,然后和下采样的特征图进行融合,得到具有更多语义信息和位置信息的特征图,这样更有利于目标检测。

图1:(a)用一个图像金字塔来构建一个特征金字塔。在每个图像尺度上独立地计算特征,很慢。(b)最近的检测系统选择使用于更快速的检测的单尺度特征。(c)通过卷积层重复利用金字塔式的特征层次结构。(d)这里提出的特征金字塔网络(RPN),和(b)(c)一样快,但是更准确。这张图中,特征图通过蓝框表示,越粗的轮廓表示语义越强。

对于图(d)侧边之间的横向连接是将上采样的结果和自下而上生成的特征图进行融合。我们将卷积神经网络中生成的对应层的特征图进行1×1的卷积操作,将之与经过上采样的特征图融合,得到一个新的特征图,这个特征图融合了不同层的特征,具有更丰富的信息。 这里1×1的卷积操作目的是改变channels,要求和后一层的channels相同。 在融合之后还会再采用3*3的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应,如此就得到了一个新的特征图。这样一层一层地迭代下去,就可以得到多个新的特征图。

图像金字塔是对传统图像处理来讲的,特征金字塔是针对深度学习来讲的。


http://chatgpt.dhexx.cn/article/WRdmxxdu.shtml

相关文章

opencv学习-高斯金字塔和拉普拉斯金字塔

图像金字塔 一个图像金字塔是由一系列的图像组成,最底下一张是图像尺寸最大,最上方的图像尺寸最小,从空间上从上向下看就像一个古代的金字塔。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。我们将一层一层的…

高斯金字塔与拉普拉斯金字塔的原理与python构建

转载自:https://zhuanlan.zhihu.com/p/94014493 高斯金字塔和拉普拉斯金字塔【1】在图像相关领域应用广泛,尤其是图像融合和图像分割方面。本文从理论和opencv实现两个方面对两种金字塔进行了介绍,并给出了二者的视觉效果。 1、高斯金字塔 在计算机视觉…

图像金字塔、高斯金字塔、拉普拉斯金字塔是怎么回事?附利用拉普拉斯金字塔和高斯金字塔重构原图的Python-OpenCV代码

图像金字塔是对图像进行多分辨率表示的一种有效且简单的结构。 一个图像金字塔是一系列以金字塔形状排列的分辨率逐步降低的图像。图像金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率表示。 图像金字塔有什么作用? 图像金字塔常用于图像缩放…

高斯金字塔

1、为什么要构建高斯金字塔 高斯金字塔模仿的是图像的不同的尺度,尺度应该怎样理解?对于一副图像,你近距离观察图像,与你在一米之外观察,看到的图像效果是不同的,前者比较清晰,后者比较模糊&am…

系统集成项目管理工程师知识点

信息化知识 在这个学时里,将学习有关信息化的许多知识点,这些知识点的试题大多出现在上午试 题中。这引起知识点主要是: (1)信息与信息化的定义。 (2)国家信息化发展战略(2006-2020&…

快速了解Scala技术栈

http://www.infoq.com/cn/articles/scala-technology/ 我无可救药地成为了Scala的超级粉丝。在我使用Scala开发项目以及编写框架后,它就仿佛凝聚成为一个巨大的黑洞,吸引力使我不得不飞向它,以至于开始背离Java。固然Java 8为Java阵营增添了一…

一篇博客带你掌握pytorch基础,学以致用(包括张量创建,索引,切片,计算,Variable对象的创建,和梯度求解,再到激活函数的使用,神经网络的搭建、训练、优化、测试)

一篇博客带你掌握pytorch基础,学以致用 1.将numpy的 ndarray对象转换为pytorch的张量 在 Pytroch 中,Tensor 是一种包含单一数据类型元素的多维矩阵,译作张量。熟悉 numpy 的同学对这个定义应该感到很熟悉,就像ndarray一样&…

AI题目整理

文章目录 1、网络配置时batchsize的大小怎样设置?过小和过大分别有什么特点?2、设置学习率衰减的原因?3、有哪些分类算法?4、分类和回归的区别?5、请描述一下K-means聚类的过程?6、训练集、测试集、验证集的作用?7、请讲解一下k折交叉验证?8、分类和聚类的区别?9、讲述…

【深度学习】对迁移学习中域适应的理解和3种技术的介绍

点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达 1 『如何理解域适应』 域适应是计算机视觉的一个领域,我们的目标是在源数据集上训练一个神经网络,并确保在显著不同于源数据集的目标数据集上也有…

协议模糊的堆叠式Seq2seq注意模型

摘要--通过生成大量异常数据作为程序的输入,模糊测试是发现软件漏洞的有效方法。很难自动模糊协议,因为必须手动构造一个满足协议规范的模板以生成测试用例。在本文中,我们建立了堆叠的seq2seq注意模型来自动生成协议测试用例。Seq2seq-atten…

【推荐收藏】3.5万字图解Pandas

文章目录 第一部分:Pandas 展示技术提升1. 排序2.按多列排序3. 添加一列4. 快速元素搜索5. 按列连接(join)6.按列分组7. 数据透视表8、Pandas速度 第二部分. Series 和 Index索引(Index)按值查找元素缺失值比较追加、插入、删除统计数据重复数…

层次分析法原理及应用案例

层次分析法是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序&#…

论文研读-AI4VIS-可视化推荐-VizML: 一种基于机器学习的可视化推荐方法

VizML: 一种基于机器学习的可视化推荐方法 1 论文概述1.1 摘要1.2 引言 2 问题陈述3 相关工作3.1 基于规则的可视化推荐系统3.2 基于机器学习的可视化推荐系统 4 数据4.1 Plotly介绍4.2 数据描述和分析,收集和清理4.2 数据特征提取4.3 设计选择提取 5 方法5.1 特征处…

《python数据分析与挖掘实战》笔记第3章

文章目录 第3章:数据探索3.1、数据质量分析3.2、数据特征分析3.2.1、分布分析3.2.2、对比分析3.2.3、统计量分析1.集中趋势度量2.离中趋势度量 3.2.4、周期性分析3.2.5、贡献度分析3.2.6、相关性分析1. 直接绘制散点图2. 绘制散点图矩阵3. 计算相关系数 3.3、python…

对迁移学习中域适应的理解和3种技术的介绍

域适应是计算机视觉的一个领域,我们的目标是在源数据集上训练一个神经网络,并确保在显著不同于源数据集的目标数据集上也有良好的准确性。为了更好地理解域适应和它的应用,让我们先看看它的一些用例。 我们有很多不同用途的标准数据集&#…

基于1305变频器的几种变参数运行测试

该文主要用于学习归纳,因此会省略正规操作中很多步骤,详述原理。欢迎指正。 一. 设备参数 1305变频器一台(380-460V/9A/4.0KW/5HP);三相异步交流电动机(1.5(2HP)/3.65A/380V/50Hz/1420rpm/4),直流发电机组;计算机&am…

2022秋 | PTA编程训练(一)

目录 1.素数对猜想 2.数组元素循环右移问题 3.水仙花数 4.找出不是两个数组共有的元素 5.找鞍点 6.验证“哥德巴赫猜想” 7.黑洞数 8.装箱问题 9.IP地址转换 10.龟兔赛跑 1.素数对猜想 题目详情: 让我们定义dn​为:dn​pn1​−pn​&#xff0…

测试用例设计之正交表法详解

正交实验法的由来 拉丁方名称的由来 古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。 数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。 什么是n阶拉丁方? 用n个不同的拉丁字母排成一…

2018年华为数通技术大赛复赛拓扑题

正在准备华为杯的竞赛,期间的训练需要用心练习,希望我的这篇文章能对跟我一样的小伙伴们起到作用。在比赛之前,我们的目的都不是配通这个网络,而是在一次次错误中总结经验,你会受益匪浅!不多说,…

华为网络技术比赛-云平台课件笔记

** (一)5 G ** 在这这张图片很重要啊!!!! 5G的子载波带宽是不固定的!!!!!! 注意: Massive MIMO (1&a…