【STM32F407的DSP教程】第19章 DSP复数运算-共轭,点乘和求模

article/2025/10/7 13:31:21

完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547

第19章       DSP复数运算-共轭,点乘和求模

本期教程主要讲解复数运算中的共轭,点乘和模的求解。

目录

第19章       DSP复数运算-共轭,点乘和求模

19.1 初学者重要提示

19.2 DSP基础运算指令

19.3 复数共轭运算(ComplexConj)

19.3.1 函数arm_cmplx_conj_f32

19.3.2 函数arm_cmplx_conj_q31

19.3.3 函数arm_cmplx_conj_q15

19.3.4 使用举例

19.4 复数点乘(ComplexDotProduct)

19.4.1 函数arm_cmplx_dot_prod_f32

19.4.2 函数arm_cmplx_dot_prod_q31

19.4.3 函数arm_cmplx_dot_prod_q15

19.4.4 使用举例

19.5 复数求模 ComplexMag

19.5.1 函数arm_cmplx_mag_f32

19.5.2 函数arm_cmplx_mag_q31

19.5.3 函数arm_cmplx_mag_q15

19.5.4 使用举例

19.6 实验例程说明(MDK)

19.7 实验例程说明(IAR)

19.8 总结


 

19.1 初学者重要提示

  1.   复数运算比较重要,后面FFT章节要用到,如果印象不深的话,需要温习下高数知识了。

19.2 DSP基础运算指令

本章用到的DSP指令在前面章节都已经讲解过。

19.3 复数共轭运算(ComplexConj)

这部分函数用于复数共轭运算,公式描述如下:

for(n=0; n<numSamples; n++)

{       

  pDst[(2*n)+0)] = pSrc[(2*n)+0];     // 实部

  pDst[(2*n)+1)] = -pSrc[(2*n)+1];    // 虚部

}

用代数式来表示a+bi的共轭就是a-bi。

19.3.1 函数arm_cmplx_conj_f32

函数原型:

void arm_cmplx_conj_f32(

  const float32_t * pSrc,

        float32_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于浮点数的复位共轭求解。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求共轭后的数据地址。
  •   第3个参数是转换的数据个数。

意事项:

参数pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。

19.3.2 函数arm_cmplx_conj_q31

函数原型:

void arm_cmplx_conj_q31(

  const q31_t * pSrc,

        q31_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于定点数Q31的复数共轭求解。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求共轭后的数据地址。
  •   第3个参数是转换的数据个数。

注意事项:

  1. 数组pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。
  2. 这个函数使用了饱和运算。数值0x80000000由于饱和运算(源码中的__QSUB(0, in))将变成0x7FFFFFFF。

19.3.3 函数arm_cmplx_conj_q15

函数原型:

void arm_cmplx_conj_q15(

  const q15_t * pSrc,

        q15_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于定点数Q15的复数共轭求解。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求共轭后的数据地址。
  •   第3个参数是转换的数据个数。

注意事项:

  1. 数组pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。
  2. 这个函数使用了饱和运算。数值0x8000由于饱和运算(源码中的__QSAX(0, in1))将变成0x7FFFF。

19.3.4 使用举例

程序设计:

/*
*********************************************************************************************************
*    函 数 名: DSP_Fill
*    功能说明: 数据填充
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void DSP_Fill(void)
{float32_t pDst[10];uint32_t pIndex;q31_t pDst1[10];q15_t pDst2[10];q7_t pDst3[10];arm_fill_f32(3.33f, pDst, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_f32: pDst[%d] = %f\r\n", pIndex, pDst[pIndex]);}/*****************************************************************/arm_fill_q31(0x11111111, pDst1, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q31: pDst1[%d] = %x\r\n", pIndex, pDst1[pIndex]);}/*****************************************************************/arm_fill_q15(0x1111, pDst2, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q15: pDst2[%d] = %d\r\n", pIndex, pDst2[pIndex]);}/*****************************************************************/arm_fill_q7(0x11, pDst3, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q7: pDst3[%d] = %d\r\n", pIndex, pDst3[pIndex]);}/*****************************************************************/printf("******************************************************************\r\n");
}/*
*********************************************************************************************************
*    函 数 名: DSP_CONJ
*    功能说明: 复数求共轭
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void DSP_CONJ(void)
{uint8_t i;float32_t pSrc[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pDst[10];q31_t pSrc1[10] = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};q31_t pDst1[10];q15_t pSrc2[10] = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};q15_t pDst2[10];/***浮点数共轭*******************************************************************************/arm_cmplx_conj_f32(pSrc, pDst, 5);printf("***浮点数共轭********************************************\r\n");for(i = 0; i < 5; i++){printf("pSrc[%d] = %f %fj    pDst[%d] = %f %fj\r\n", i,  pSrc[2*i], pSrc[2*i+1], i, pDst[2*i],pDst[2*i+1]);}/***定点数共轭Q31*******************************************************************************/printf("***定点数共轭Q31*****************************************\r\n");arm_cmplx_conj_q31(pSrc1, pDst1, 5);for(i = 0; i < 5; i++){printf("pSrc1[%d] = %d %dj    pDst1[%d] = %d %dj\r\n", i,  pSrc1[2*i], pSrc1[2*i+1], i, pDst1[2*i],pDst1[2*i+1]);}/***定点数共轭Q15*******************************************************************************/printf("***定点数共轭Q15*****************************************\r\n");arm_cmplx_conj_q15(pSrc2, pDst2, 5);for(i = 0; i < 5; i++){printf("pSrc2[%d] = %d %dj    pDst2[%d] = %d %dj\r\n", i,  pSrc2[2*i], pSrc2[2*i+1], i, pDst2[2*i],pDst2[2*i+1]);}
}

 

实验现象:

19.4 复数点乘(ComplexDotProduct)

这部分函数用于复数共轭运算,公式描述如下:

realResult = 0;

imagResult = 0;

for (n = 0; n < numSamples; n++) {

realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];    //实部

imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];  //虚部

}

用代数式来表示复数乘法就是:

(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

19.4.1 函数arm_cmplx_dot_prod_f32

函数原型:

void arm_cmplx_dot_prod_f32(

  const float32_t * pSrcA,

  const float32_t * pSrcB,

        uint32_t numSamples,

        float32_t * realResult,

        float32_t * imagResult)

函数描述:

这个函数用于浮点数的复数点乘。

函数参数:

  •   第1个参数是源数据A地址。
  •   第2个参数是源数据B地址。
  •   第3个参数是点乘的数据个数。
  •   第4个参数是点乘后的实数地址。
  •   第5个参数是点乘后的虚数地址。

注意事项:

数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。

19.4.2 函数arm_cmplx_dot_prod_q31

函数原型:

void arm_cmplx_dot_prod_q31(

  const q31_t * pSrcA,

  const q31_t * pSrcB,

        uint32_t numSamples,

        q63_t * realResult,

        q63_t * imagResult)

函数描述:

这个函数用于定点数Q31的复数点乘。

函数参数:

  •   第1个参数是源数据A地址。
  •   第2个参数是源数据B地址。
  •   第3个参数是点乘的数据个数。
  •   第4个参数是点乘后的实数地址。
  •   第5个参数是点乘后的虚数地址。

注意事项:

  1. 数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。
  2. 这个函数的内部使用了64累加器,1.31格式数据乘以1.31格式数据结果就是2.62格式,这里我们将所得结果右移14位,那么数据就是16.48格式。由于加数是不支持饱和运算,所以只要numSamples的个数小于32768就不会有溢出的危险。

19.4.3 函数arm_cmplx_dot_prod_q15

函数原型:

void arm_cmplx_dot_prod_q15(

  const q15_t * pSrcA,

  const q15_t * pSrcB,

        uint32_t numSamples,

        q31_t * realResult,

        q31_t * imagResult)

函数描述:

这个函数用于定点数Q15的复数点乘。

函数参数:

  •  第1个参数是源数据A地址。
  •   第2个参数是源数据B地址。
  •   第3个参数是点乘的数据个数。
  •   第4个参数是点乘后的实数地址。
  •   第5个参数是点乘后的虚数地址。

注意事项:

  1. 数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。
  2. 这个函数的内部使用了64累加器,1.15格式数据乘以1.15格式数据结果就是2.30格式,对应到64bit就是34.30,然后将最终的计算结果转换为8.24。

19.4.4 使用举例

程序设计:

/*
*********************************************************************************************************
*    函 数 名: DSP_CmplxDotProduct
*    功能说明: 复数点乘
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void DSP_CmplxDotProduct(void)
{float32_t pSrcA[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pSrcB[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t realResult;float32_t imagResult;q31_t pSrcA1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q31_t pSrcB1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q63_t realResult1;q63_t imagResult1;q15_t pSrcA2[10] = {5000, 10000, 15000, 20000, 25000,  5000, 10000, 15000, 20000, 25000};q15_t pSrcB2[10] =  {5000, 10000, 15000, 20000, 25000,  5000, 10000, 15000, 20000, 25000};q31_t realResult2;q31_t imagResult2;/***浮点数点乘*******************************************************************************/arm_cmplx_dot_prod_f32(pSrcA, pSrcB, 5, &realResult, &imagResult);printf("arm_cmplx_dot_prod_f32:realResult = %f    imagResult = %f\r\n", realResult, imagResult);/***定点数点乘Q31*******************************************************************************/arm_cmplx_dot_prod_q31(pSrcA1, pSrcB1, 5, &realResult1, &imagResult1);printf("arm_cmplx_dot_prod_q31:realResult1 = %lld    imagResult1 = %lld\r\n", realResult1, imagResult1);/***定点数点乘Q15*******************************************************************************/arm_cmplx_dot_prod_q15(pSrcA2, pSrcB2, 5, &realResult2, &imagResult2);printf("arm_cmplx_dot_prod_q15:realResult2 = %d    imagResult2 = %d\r\n", realResult2, imagResult2);
}

 

实验现象:

19.5 复数求模 ComplexMag

这部分函数用于复数求模,公式描述如下:

for (n = 0; n < numSamples; n++) {

    pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);

 }

用代数式来表示复数乘法就是:

19.5.1 函数arm_cmplx_mag_f32

函数原型:

void arm_cmplx_mag_f32(

  const float32_t * pSrc,

        float32_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于浮点数类型的复数求模。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求模后的数据地址。
  •   第3个参数是要求解的复数个数。

注意事项:

数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。

19.5.2 函数arm_cmplx_mag_q31

函数原型:

void arm_cmplx_mag_q31(

  const q31_t * pSrc,

        q31_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于定点数Q31类型的复数求模。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求模后的数据地址。
  •   第3个参数是要求解的复数个数。

注意事项:

  •   数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。
  •   1.31格式的数据乘1.31格式的数据,并经过移位处理后结果是2.30格式。

19.5.3 函数arm_cmplx_mag_q15

函数原型:

void arm_cmplx_mag_q15(

  const q15_t * pSrc,

        q15_t * pDst,

        uint32_t numSamples)

函数描述:

这个函数用于定点数Q15类型的复数求模。

函数参数:

  •   第1个参数是源数据地址。
  •   第2个参数是求模后的数据地址。
  •   第3个参数是要求解的复数个数

注意事项:

  •   数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。
  •   1.15格式的数据乘1.15格式的数据,并经过移位处理后结果是2.14格式。

19.5.4 使用举例

程序设计:

/*
*********************************************************************************************************
*    函 数 名: DSP_CmplxMag
*    功能说明: 复数求模
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void DSP_CmplxMag(void)
{uint8_t i;float32_t pSrc[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pDst[10];q31_t pSrc1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q31_t pDst1[10];q15_t pSrc2[10] = {5000, 10000, 15000, 20000, 25000,  5000, 10000, 15000, 20000, 25000};q15_t pDst2[10];/***浮点数求模*******************************************************************************/arm_cmplx_mag_f32(pSrc, pDst, 5);for(i = 0; i < 5; i++){printf("pDst[%d] = %f\r\n", i, pDst[i]);}/***定点数求模Q31*******************************************************************************/arm_cmplx_mag_q31(pSrc1, pDst1, 5);for(i = 0; i < 5; i++){printf("pDst1[%d] = %d\r\n", i, pDst1[i]);}/***定点数求模Q15*******************************************************************************/arm_cmplx_mag_q15(pSrc2, pDst2, 5);for(i = 0; i < 5; i++){printf("pDst2[%d] = %d\r\n", i, pDst2[i]);}
}

 

实验现象:

19.6 实验例程说明(MDK)

配套例子:

V7-214_DSP复数运算(共轭,点乘和求模)

实验目的:

  1. 学习DSP复数运算(共轭,点乘和求模)

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. 按下按键K1,串口打函数DSP_CONJ的输出数据。
  3. 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
  4. 按下按键K3,串口打函数DSP_CmplxMag的输出数据。

使用AC6注意事项

特别注意附件章节C的问题

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

详见本章的3.4  4.4,5.4小节。

程序设计:

  系统栈大小分配:

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIV优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/    
#if Enable_EventRecorder == 1  /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart();
#endifbsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer();      /* 初始化滴答定时器 */bsp_InitUart();    /* 初始化串口 */bsp_InitExtIO();   /* 初始化扩展IO */bsp_InitLed();        /* 初始化LED */        
}

 

  主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •   按下按键K1,串口打函数DSP_CONJ的输出数据。
  •   按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
  •   按下按键K3,串口打函数DSP_CmplxMag的输出数据。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint8_t ucKeyCode;        /* 按键代码 */bsp_Init();        /* 硬件初始化 */PrintfLogo();    /* 打印例程信息到串口1 */PrintfHelp();    /* 打印操作提示信息 */bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 *//* 进入主程序循环体 */while (1){bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))    {/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1:            /* K1键按下, 求共轭 */DSP_CONJ();break;case KEY_DOWN_K2:            /* K2键按下, 求点乘 */DSP_CmplxDotProduct();break;case KEY_DOWN_K3:            /* K3键按下, 求模 */DSP_CmplxMag();break;default:/* 其他的键值不处理 */break;}}}
}

 

19.7 实验例程说明(IAR)

配套例子:

V7-214_DSP复数运算(共轭,点乘和求模)

实验目的:

  1. 学习DSP复数运算(共轭,点乘和求模)

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. 按下按键K1,串口打函数DSP_CONJ的输出数据。
  3. 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
  4. 按下按键K3,串口打函数DSP_CmplxMag的输出数据。

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

详见本章的3.4  4.4,5.4小节。

程序设计:

  系统栈大小分配:

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIV优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/    
#if Enable_EventRecorder == 1  /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart();
#endifbsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer();      /* 初始化滴答定时器 */bsp_InitUart();    /* 初始化串口 */bsp_InitExtIO();   /* 初始化扩展IO */bsp_InitLed();        /* 初始化LED */        
}

 

  主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •   按下按键K1,串口打函数DSP_CONJ的输出数据。
  •   按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
  •   按下按键K3,串口打函数DSP_CmplxMag的输出数据。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{uint8_t ucKeyCode;        /* 按键代码 */bsp_Init();        /* 硬件初始化 */PrintfLogo();    /* 打印例程信息到串口1 */PrintfHelp();    /* 打印操作提示信息 */bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 *//* 进入主程序循环体 */while (1){bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0))    {/* 每隔100ms 进来一次 */  bsp_LedToggle(2);}ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1:            /* K1键按下, 求共轭 */DSP_CONJ();break;case KEY_DOWN_K2:            /* K2键按下, 求点乘 */DSP_CmplxDotProduct();break;case KEY_DOWN_K3:            /* K3键按下, 求模 */DSP_CmplxMag();break;default:/* 其他的键值不处理 */break;}}}
}

 

19.8 总结

本期教程就跟大家讲这么多,有兴趣的可以深入研究下算法的具体实现。

 


http://chatgpt.dhexx.cn/article/VlASRNq6.shtml

相关文章

【STM32F407的DSP教程】第1章 初学数字信号处理准备工作

完整版教程下载地址&#xff1a;http://www.armbbs.cn/forum.php?modviewthread&tid94547 第1章 初学数字信号处理准备工作 本期教程开始带领大家学习DSP教程&#xff0c;学习前首先要搞明白一个概念&#xff0c;DSP有两层含义&#xff0c;一个是DSP芯片也就是Digital…

【STM32H7的DSP教程】第11章 DSP基础函数-绝对值,求和,乘法和点乘

完整版教程下载地址&#xff1a;http://www.armbbs.cn/forum.php?modviewthread&tid94547 第11章 DSP基础函数-绝对值&#xff0c;求和&#xff0c;乘法和点乘 本期教程开始学习ARM官方的DSP库&#xff0c;这里我们先从基本数学函数开始。本期教程主要讲绝对值&am…

c++中ifstream和ofstream的详细用法

TITLE&#xff1a;因为不经常用这两个操作&#xff0c;每次用都得找&#xff0c;网上的文章良莠不齐&#xff0c;有时候不容易找到合适的&#xff0c;故将其记录下来&#xff0c;供以后使用方便。 1. fstream fstream提供了三个类&#xff0c;用来实现c对文件的操作。&#x…

C++文件读取ifstream

使用ifstream流来读取文件 说明&#xff1a; 1.ifstream类的对象创建成功的时候会返回非空值&#xff0c;借此判断是否创建文件对象成功 2.ifstream有个函数eof()用来判断文件是否读到尾部,没读到尾部返回false&#xff0c;否则返回true。 若尾部有回车&#xff0c;那么最后一…

C++中读取文件ifstream、ofstream

现在&#xff0c;我想对一个utf-8的json文件进行读写操作。在此过程中&#xff0c;遇到了一些问题。 头文件的添加&#xff1a; #include <iostream> #include <cstring> #include <fstream> #include <sstream> &#xff08;一&#xff09;ifstrea…

C++ 文件读写操作std::ofstream和std::ifstream

文章目录 前言一、文件操作的介绍二、使用步骤1.读文件操作&#xff08;std::ifstream&#xff09;2.写文件操作&#xff08;std::ofstream&#xff09; 前言 例如&#xff1a;随着人工智能的不断发展&#xff0c;机器学习这门技术也越来越重要&#xff0c;很多人都开启了学习…

C++ 中 ifstream读取txt文件内容

文章目录 头文件把txt文件放在当前目录下1、逐行读入文件2、逐个字符读入&#xff08;忽略空格与回车&#xff09;3、逐个字符读入&#xff08;包括空格与回车&#xff09;示例代码 头文件 #include <iostream> #include <fstream> #include <cassert> #inc…

【C++11】文件操作ifstreamofstream

文章目录 文件输入流创建ifstream对象读取文件数据 文件输出流文件流的打开模式创建ofstream对象写入文件数据 文件输入输出示例 文件输入流 创建ifstream对象 使用ifstream类创建ifstream对象&#xff0c;所获取的对象能够像cin一样使用>>运算符从所绑定文件中读取数据…

C++ ifstream eof()的使用

C ifstream eof() 的使用 eof() 的使用方法1 ifstream.eof() 读到文件结束符时返回true。 大家可能有一个误区&#xff0c;认为读到文件结束符就是读到文件的最后一个字符。 其实不然&#xff0c;文件结束符是文件最后一个字符的下一个字符0xFF&#xff0c;eof() 读到文件结束…

C++文件读写详解(ofstream,ifstream,fstream)

在看C编程思想中&#xff0c;每个练习基本都是使用ofstream,ifstream,fstream&#xff0c;以前粗略知道其用法和含义&#xff0c;在看了几位大牛的博文后&#xff0c;进行整理和总结&#xff1a; 这里主要是讨论fstream的内容&#xff1a; #include <fstream>ofstream …

c++输入文件流ifstream用法详解

目录 文章目录 输入流的继承关系&#xff1a;成员函数Public member functions 1&#xff0c; (constructor) 2&#xff0c;ifstream::open 3&#xff0c;ifstream:: is_open 4&#xff0c;ifstream:: close 5&#xff0c;ifstream:: rdbuf 6&#xff0c;ifstream:: operator …

ifstream的使用

fstream提供了三个类&#xff0c;用来实现c对文件的操作。&#xff08;文件的创建、读、写&#xff09;。 ifstream – 从已有的文件读入 ofstream – 向文件写内容 fstream - 打开文件供读写 文件打开模式&#xff1a; ios::in 只读 ios::out 只写 ios::app 从文件末尾开始写&…

c++ 输入文件流ifstream用法详解

文章目录 c 输入文件流ifstream用法详解输入流的继承关系&#xff1a;C 使用标准库类来处理面向流的输入和输出&#xff1a;成员函数Public member functions1. **(constructor)**2. **ifstream::open**3. **ifstream:: is_open**4. **ifstream:: close**5. **ifstream:: rdbuf…

计算机工业控制高职教材,计算机控制技术(21世纪高职高专系列规划教材)

导语 本书以工业控制计算机(IPC)为主线&#xff0c;理论联系实际&#xff0c;突出工程应用&#xff0c;阐述了计算机控制技术及其工程实现方法。全书分为8章&#xff0c;内容包括&#xff1a;计算机控制系统概述&#xff0c;计算机控制过程通道&#xff0c;数字控制技术&#x…

高职高专信息工程学院专业设置

学院全面落实立德树人根本任务,注重实习实训,着力培养德才兼备的技能型信息技术人才。与华为、腾讯、百度、阿里巴巴、新浪、搜狐、网易等多家知名IT企业合作,建成多所紧贴行业前沿的实习实训基地,保证人才培养与企业需求无缝对接。学院现有计算机应用技术、云计算技术应用…

湖北省高职计算机本科学校有哪些,盘点最新湖北十大高职高专院校排名,湖北最好的高职院校有哪些?...

高职高专就是高等职业学院和高等专科学校的简称&#xff0c;是专科(大专)层次的普通高等学校。简单点来说&#xff0c;高职高专院校就是职业技术教育&#xff0c;是职业技术教育的高等阶段。今天小编就来给大家盘点下最新湖北十大高职高专院校排名&#xff0c;湖北最好的高职院…

江西省计算机学会高职高专,我校应邀出席江西省计算机学会高职高专工作委员会成立大会...

8月21日下午&#xff0c;江西省计算机学会高职高专工作委员会成立大会在南昌召开&#xff0c;中国计算机学会职业教育发展委员会、江西省计算机学会、广东省计算机学会高职高专分会、省内相关高职院校领导和企业代表等90余人参加成立大会。我校作为主任委员单位&#xff0c;副校…

武汉高职高专计算机专业分数线,武汉高职高专学校有哪些及分数线

武汉市高职高专众多&#xff0c;其中也包含不少野鸡大学&#xff0c;哪些高职高专是值得2020年高考生选择的正规高校&#xff0c;7月9日教育部官网已公布全国高校名单&#xff0c;其中武汉市有37所公办或民办的高职学校&#xff0c;已整理各高职院校2019年名单及最低录取分数线…

高职高专计算机毕业论文平面设计,高职高专平面设计论文

高职高专平面设计论文 1高职高专平面设计教学的问题 (1)学生学习态度不够端正 随着高校的不断扩招&#xff0c;大学本科的门槛变低&#xff0c;学习不好的学生也可以考上高职高专的&#xff0c;所以很多学生高中学习成绩就不好&#xff0c;基础不扎实&#xff0c;他们一直是态度…

计算机网络 高职,高职高专计算机网络

高职高专计算机网络 1、高职高专院校精品课程现状 从教学方法到教学手段、从教学思想到教学内容、从教材到管理、从教师到学生&#xff0c;计算机网络精品课程建设涉及广泛。然而&#xff0c;要想提升教学质量&#xff0c;就必须紧抓每一个环节。 1.1教学实践比重失衡 在现阶段…