十大排序算法——C语言实现

article/2025/10/13 3:10:11

在这里插入图片描述

在这里插入图片描述

1.冒泡排序

​ 冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。

1.算法步骤

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2.动画演示

在这里插入图片描述

3. 什么时候最快

当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。

4. 什么时候最慢

当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。

5.C语言实现

include <stdio.h>
void bubble_sort(int arr[], int len) {int i, j, temp;for (i = 0; i < len - 1; i++)for (j = 0; j < len - 1 - i; j++)if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);bubble_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

2.选择排序

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

1. 算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

2. 动图演示

在这里插入图片描述

3.代码实现

#include <stdio.h>
void swap(int *a,int *b) //交换两个数
{int temp = *a;*a = *b;*b = temp;
}
void selection_sort(int arr[], int len)
{int i,j;for (i = 0 ; i < len - 1 ; i++){int min = i;for (j = i + 1; j < len; j++)     //走访未排序的元素if (arr[j] < arr[min])    //找到目前最小值min = j;    //记录最小值swap(&arr[min], &arr[i]);    //做交换}
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);selection_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

3.插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

1. 算法步骤

  1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
  2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

2. 动图演示

[动图演示

3.代码实现

#include <stdio.h>
void insertion_sort(int arr[], int len){int i,j,key;for (i=1;i<len;i++){key = arr[i];j=i-1;while((j>=0) && (arr[j]>key)) {arr[j+1] = arr[j];j--;}arr[j+1] = key;}
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);insertion_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

4.希尔排序

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

1. 算法步骤

  1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  2. 按增量序列个数 k,对序列进行 k 趟排序;
  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2.动画演示

img

3. 代码实现

#include <stdio.h>
void shell_sort(int arr[], int len) {int gap, i, j;int temp;for (gap = len >> 1; gap > 0; gap >>= 1)for (i = gap; i < len; i++) {temp = arr[i];for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)arr[j + gap] = arr[j];arr[j + gap] = temp;}
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);shell_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

5.归并排序

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
  • 自下而上的迭代;

2. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  4. 重复步骤 3 直到某一指针达到序列尾;
  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

3. 动图演示

动图演示

4. 代码实现 迭代版

#include <stdio.h>
#include <stdlib.h>
int min(int x, int y) {return x < y ? x : y;
}
void merge_sort(int arr[], int len) {int *a = arr;int *b = (int *) malloc(len * sizeof(int));int seg, start;for (seg = 1; seg < len; seg += seg) {for (start = 0; start < len; start += seg * 2) {int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);int k = low;int start1 = low, end1 = mid;int start2 = mid, end2 = high;while (start1 < end1 && start2 < end2)b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];while (start1 < end1)b[k++] = a[start1++];while (start2 < end2)b[k++] = a[start2++];}int *temp = a;a = b;b = temp;}if (a != arr) {int i;for (i = 0; i < len; i++)b[i] = a[i];b = a;}free(b);
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);merge_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

4.1代码实现递归版

#include <stdio.h>
#include <stdlib.h>
void merge_sort_recursive(int arr[], int reg[], int start, int end) {if (start >= end)return;int len = end - start, mid = (len >> 1) + start;int start1 = start, end1 = mid;int start2 = mid + 1, end2 = end;merge_sort_recursive(arr, reg, start1, end1);merge_sort_recursive(arr, reg, start2, end2);int k = start;while (start1 <= end1 && start2 <= end2)reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];while (start1 <= end1)reg[k++] = arr[start1++];while (start2 <= end2)reg[k++] = arr[start2++];for (k = start; k <= end; k++)arr[k] = reg[k];
}void merge_sort(int arr[], const int len) {int reg[len];merge_sort_recursive(arr, reg, 0, len - 1);
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);merge_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

6.快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

2. 动图演示

img

3.代码实现

#include <stdio.h>
#include <stdlib.h>
typedef struct _Range {int start, end;
} Range;Range new_Range(int s, int e) {Range r;r.start = s;r.end = e;return r;
}void swap(int *x, int *y) {int t = *x;*x = *y;*y = t;
}void quick_sort(int arr[], const int len) {if (len <= 0)return; // 避免len等於負值時引發段錯誤(Segment Fault)// r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素Range r[len];int p = 0;r[p++] = new_Range(0, len - 1);while (p) {Range range = r[--p];if (range.start >= range.end)continue;int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點int left = range.start, right = range.end;do {while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求while (arr[right] > mid) --right; //檢測基準點右側是否符合要求if (left <= right) {swap(&arr[left], &arr[right]);left++;right--;               // 移動指針以繼續}} while (left <= right);if (range.start < right) r[p++] = new_Range(range.start, right);if (range.end > left) r[p++] = new_Range(left, range.end);}
}
int main() {int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);quick_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);return 0;
}

4.代码实现递归版

#include <stdio.h>
#include <stdlib.h>
void swap(int *x, int *y) {int t = *x;*x = *y;*y = t;
}void quick_sort_recursive(int arr[], int start, int end) {if (start >= end)return;int mid = arr[end];int left = start, right = end - 1;while (left < right) {while (arr[left] < mid && left < right)left++;while (arr[right] >= mid && left < right)right--;swap(&arr[left], &arr[right]);}if (arr[left] >= arr[end])swap(&arr[left], &arr[end]);elseleft++;if (left)quick_sort_recursive(arr, start, left - 1);quick_sort_recursive(arr, left + 1, end);
}void quick_sort(int arr[], int len) {quick_sort_recursive(arr, 0, len - 1);
}
int main() {int arr[] = { 22, 34, 3, 32, 82,55, 89, 50, 37, 5, 64, 35, 9, 70 };int len = (int) sizeof(arr) / sizeof(*arr);quick_sort_recursive(arr, 0,len);int i;for (i = 0; i < 15; i++)printf("%d ", arr[i]);return 0;
}

7.堆排序、

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 将待排序序列构建成一个堆 H[0……n-1],根据(升序降序需求)选择大顶堆或小顶堆;
  2. 把堆首(最大值)和堆尾互换;
  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示

动图演示

img

3. 代码实现

#include <stdio.h>
#include <stdlib.h>void swap(int *a, int *b) {int temp = *b;*b = *a;*a = temp;
}void max_heapify(int arr[], int start, int end) {// 建立父節點指標和子節點指標int dad = start;int son = dad * 2 + 1;while (son <= end) { // 若子節點指標在範圍內才做比較if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的son++;if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數return;else { // 否則交換父子內容再繼續子節點和孫節點比較swap(&arr[dad], &arr[son]);dad = son;son = dad * 2 + 1;}}
}void heap_sort(int arr[], int len) {int i;// 初始化,i從最後一個父節點開始調整for (i = len / 2 - 1; i >= 0; i--)max_heapify(arr, i, len - 1);// 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢for (i = len - 1; i > 0; i--) {swap(&arr[0], &arr[i]);max_heapify(arr, 0, i - 1);}
}int main() {int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };int len = (int) sizeof(arr) / sizeof(*arr);heap_sort(arr, len);int i;for (i = 0; i < len; i++)printf("%d ", arr[i]);printf("\n");return 0;
}

8.计数排序

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1.算法的步骤如下:

  • (1)找出待排序的数组中最大和最小的元素
  • (2)统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • (3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • (4)反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

2…动画演示

动图演示

2.代码实现

#include <stdio.h>
#include <stdlib.h>
#include <time.h>void print_arr(int *arr, int n) {int i;printf("%d", arr[0]);for (i = 1; i < n; i++)printf(" %d", arr[i]);printf("\n");
}void counting_sort(int *ini_arr, int *sorted_arr, int n) {int *count_arr = (int *) malloc(sizeof(int) * 100);int i, j, k;for (k = 0; k < 100; k++)count_arr[k] = 0;for (i = 0; i < n; i++)count_arr[ini_arr[i]]++;for (k = 1; k < 100; k++)count_arr[k] += count_arr[k - 1];for (j = n; j > 0; j--)sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];free(count_arr);
}int main(int argc, char **argv) {int n = 10;int i;int *arr = (int *) malloc(sizeof(int) * n);int *sorted_arr = (int *) malloc(sizeof(int) * n);srand(time(0));for (i = 0; i < n; i++)arr[i] = rand() % 100;printf("ini_array: ");print_arr(arr, n);counting_sort(arr, sorted_arr, n);printf("sorted_array: ");print_arr(sorted_arr, n);free(arr);free(sorted_arr);return 0;
}

9.桶排序

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量
  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

1. 什么时候最快

当输入的数据可以均匀的分配到每一个桶中。

2. 什么时候最慢

当输入的数据被分配到了同一个桶中。

3. 示意图

元素分布在桶中:

img

然后,元素在每个桶中排序:

img

10.基数排序

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

1. 基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

2. LSD 基数排序动图演示

img

3.代码实现

#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10void print(int *a, int n) {int i;for (i = 0; i < n; i++) {printf("%d\t", a[i]);}
}void radixsort(int *a, int n) {int i, b[MAX], m = a[0], exp = 1;for (i = 1; i < n; i++) {if (a[i] > m) {m = a[i];}}while (m / exp > 0) {int bucket[BASE] = { 0 };for (i = 0; i < n; i++) {bucket[(a[i] / exp) % BASE]++;}for (i = 1; i < BASE; i++) {bucket[i] += bucket[i - 1];}for (i = n - 1; i >= 0; i--) {b[--bucket[(a[i] / exp) % BASE]] = a[i];}for (i = 0; i < n; i++) {a[i] = b[i];}exp *= BASE;#ifdef SHOWPASSprintf("\nPASS   : ");print(a, n);
#endif}
}int main() {int arr[MAX];int i, n;printf("Enter total elements (n <= %d) : ", MAX);scanf("%d", &n);n = n < MAX ? n : MAX;printf("Enter %d Elements : ", n);for (i = 0; i < n; i++) {scanf("%d", &arr[i]);}printf("\nARRAY  : ");print(&arr[0], n);radixsort(&arr[0], n);printf("\nSORTED : ");print(&arr[0], n);printf("\n");return 0;
}

参考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/10.radixSort.md

https://zh.wikipedia.org/wiki/%E5%9F%BA%E6%95%B0%E6%8E%92%E5%BA%8F
https://www.runoob.com/w3cnote/ten-sorting-algorithm.html


http://chatgpt.dhexx.cn/article/VQZxmqVW.shtml

相关文章

Python实现十大排序算法

1.排序算法概述 非线性时间比较类排序&#xff1a;通过比较来决定元素间的相对次序&#xff0c;由于其时间复杂度不能突破O(nlogn)&#xff0c;因此称为非线性时间比较类排序。 线性时间非比较类排序&#xff1a;不通过比较来决定元素间的相对次序&#xff0c;它可以突破基于比…

Java实现十大排序算法

Java实现十大排序算法 十大排序算法分别为&#xff1a;选择排序、冒泡排序、插入排序、快速排序、归并排序、堆排序、希尔排序、桶排序、计数排序、基数排序。 本篇只是为了方便我在代码中直接复制调用&#xff0c;因此原理和思想解释的并不清楚&#xff0c;想看原理的朋友可…

十大排序算法(C++版)

十大排序算法 前言一、插入排序二、希尔排序三、冒泡排序四、快速排序五、选择排序六、归并排序七、堆排序八、计数排序九、桶排序十、基数排序总结 前言 什么是排序&#xff1f; 排序&#xff1a;将一组杂乱无章的数据按一定规律顺次排列起来。即&#xff0c;将无序序列排成一…

十大排序算法详解

十大排序算法详解 参考程序员必知必会的十大排序算法详解 引言 对于排序的分类&#xff0c;可以将排序算法分为两大类&#xff1a;基于比较和非比较的算法。 基于比较的排序算法可以细分为&#xff1a; 基于交换类&#xff1a;冒泡排序、快速排序基于插入类&#xff1a;直接插入…

JS 实现十大排序算法

文章目录 前言零、十大排序一、冒泡排序&#xff08;bubbleSort&#xff09;二、选择排序&#xff08;selectionSort&#xff09;三、插入排序&#xff08;insertSort&#xff09;四、希尔排序&#xff08;shellSort&#xff09;五、归并排序&#xff08;mergeSort&#xff09;…

十大经典排序算法Java版(动图演示)

文章目录 0 排序算法说明0.1 内部排序和外部排序0.2 比较类排序和非比较类排序0.3 关于时间复杂度0.4 关于稳定性0.5 名词解释&#xff1a; 1 交换排序——冒泡排序&#xff08;Bubble Sort&#xff09;1.1 什么时候最快1.2 什么时候最慢1.3 算法步骤1.4 动图演示1.5 Java实现 …

html之如何让button按钮居中

解决措施&#xff1a;使用center或者div的align属性 示例代码&#xff1a; <html> <body><center><button onClick"clickme()">hit me</button></center><script>function clickme(){alert("123");} </scr…

HTML中让表单和提交按钮居中的方法

表单&#xff1a; form{ width: 500px; /*设置宽度&#xff0c;方便使其居中*/ margin: 40px auto auto auto; /*上右下左*/ font-size: 25px; 提交按钮&#xff1a;div的align属性 <div align"center"><button onClick"clickme()">提交…

android中的Button按钮居中(水平垂直中)

今天发现一个很怪异的事 Android Studio中居然一个简单的按钮水品垂直居中都写不出来 下图为理想效果&#xff1a; 可是当我写原始出代码的时候&#xff08;如下&#xff09;&#xff1a; <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android&quo…

Vue组件居中:文字居中,按钮居中,图片居中等,如何实现在容器中居中

Vue实现组件在容器中居中显示的办法 本文用实验的方法理解各种方法实现居中的效果。 实现水平居中的样式主要有&#xff1a;text-align: center&#xff0c; margin: auto。 当然还有别的方式也可以实现&#xff0c;也会写在下面。 用三个同样的div来控制变量法看效果&#xf…

Contact form 7 提交按钮居中,怎么设置submit button居中显示

Contact form 7 提交按钮居中&#xff0c;怎么设置submit button居中显示 前言 最近公司在做网站&#xff0c;毫无疑问用的是wordpress程序&#xff0c;然后就用到了contact form 7这个插件。单是这个插件的按钮始终无法居中显示&#xff0c;查了很多教程有的让改主题&#x…

tkinter 让按钮居中显示

def ask(self, title, text, btn_comfirm_name"确定", btn_cancel_name"取消", wraplength400):self.master.title(title)tk.Label(self.middle, texttext, bg"#ffffff", wraplengthwraplength,justify"left").pack(pady15)self.botto…

html表单中按钮居中,Ant design StepsForm中如何使底部按钮居中

如图所示,当前有一个StepsForm表单,代码如下(基本就是官网的示例修改的)const Demo: React.FC = () => {const Option = [ {key: 1, value: 111, label: 个人 }, {key: 2, value: 222, label: 合作 }, ] const waitTime = (time: number = 100) => {return new Promise…

layui使按钮居中_button按钮居中的方法

今天在写页面时&#xff0c;发现给button按钮设置居中时&#xff0c;css页面写了text-align"center"&#xff0c;但是不起作用&#xff0c;用了display属性也无作用&#xff0c;试了好多次发现要给button按钮添加个p&#xff0c;然后让p居中就可以了。以下写个test来…

Android IMS 语音通话 vs 视频通话 vs 视频彩铃

背景 以下内容基于Android P code。 主要差异 视频通话比语音通话主要是多了判断是否为视频通话&#xff0c;及视频的显示和传输。如下&#xff1a; video call 视频界面显示控制 界面通过IVideoProvider控制camera的显示并设置TextureView等&#xff0c;Ims service通过IV…

Unity 语音和视频通话快速解决方案——声网 SDK接入指南(Android)

Unity 语音和视频通话快速解决方案——声网 SDK接入指南&#xff08;Android&#xff09; 文章目录 Unity 语音和视频通话快速解决方案——声网 SDK接入指南&#xff08;Android&#xff09;一、前言二、后台创建应用三、获取 SDK四、接入 Agora Voice 语音 SDK1. 导入工程2. 搭…

技术分享| 小程序实现音视频通话

上一期我们把前期准备工作做完了&#xff0c;这一期就带大家实现音视频通话&#xff01; sdk 二次封装 为了更好的区分功能&#xff0c;我分成了六个 js 文件 config.js 音视频与呼叫邀请配置 store.js 实现音视频通话的变量 rtc.js 音视频逻辑封装 live-code.js 微信推拉…

快速开放,推荐一个视频通话sdk agora

1&#xff0c;agora 推荐一个做实时视频的sdk。 做互联网公司&#xff0c;要快速做出自己的稳定的产品。 视频&#xff0c;语音聊天还是有一定的门槛的。 http://cn.agora.io/ 做互联网的要的就是要快速 2&#xff0c;每个月还有免费的流量 上线后每月10000分钟免费。这个…

基于linphone android sdk 的voip语音、视频通话 教程三、视频通话

如果觉得下面的麻烦可以直接到https://item.taobao.com/item.htm?id587133228080获取源码。源码功能性更好、更完善。 想测试apk请加群261074724 最新的sdk4教程地址 https://blog.csdn.net/Java_lilin/article/details/84842314 前面两篇介绍了注册、拨打、接听等 参考地…

Web项目引入Agora SDK实现视频通话功能

零、前言 简介&#xff1a;声网Agora。一个专注移动端的高清实时通话云服务解决方案。 &#xff08;1&#xff09;声网Agora成立于2013年&#xff0c;是实时音视频云行业开创者和全球领先的专业PaaS服务商。开发者只需简单调用Agora API&#xff0c;30分钟即可在应用内构建多种…