Pandas | 详解数据的合并和拼接

article/2025/10/6 0:56:50

转自Pandas | 详解数据的合并和拼接

个人学习收藏,侵删

--------------------------------------------------------------------------------------------------------

Pandas包的merge、join、concat方法可以完成数据的合并和拼接,merge方法主要基于两个dataframe的共同列进行合并,join方法主要基于两个dataframe的索引进行合并,concat方法是对series或dataframe进行行拼接或列拼接。

1. Merge方法

pandas的merge方法是基于共同列,将两个dataframe连接起来。merge方法的主要参数:

  1. left/right:左/右位置的dataframe。
  2. how:数据合并的方式。left:基于左dataframe列的数据合并;right:基于右dataframe列的数据合并;outer:基于列的数据外合并(取并集);inner:基于列的数据内合并(取交集);默认为'inner'。
  3. on:用来合并的列名,这个参数需要保证两个dataframe有相同的列名。
  4. left_on/right_on:左/右dataframe合并的列名,也可为索引,数组和列表。
  5. left_index/right_index:是否以index作为数据合并的列名,True表示是。
  6. sort:根据dataframe合并的keys排序,默认是。
  7. suffixes:若有相同列且该列没有作为合并的列,可通过suffixes设置该列的后缀名,一般为元组和列表类型。

merges通过设置how参数选择两个dataframe的连接方式,有内连接,外连接,左连接,右连接,下面通过例子介绍连接的含义。

1.1 内连接

  how='inner',dataframe的链接方式为内连接,我们可以理解基于共同列的交集进行连接,参数on设置连接的共有列名。

# 单列的内连接
# 定义df1
import pandas as pd
import numpy as npdf1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# print(df1)
# print(df2)
# 基于共同列alpha的内连接
df3 = pd.merge(df1,df2,how='inner',on='alpha')
df3

  取共同列alpha值的交集进行连接。

1.2 外连接

  how='outer',dataframe的链接方式为外连接,我们可以理解基于共同列的并集进行连接,参数on设置连接的共有列名。 

# 单列的外连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的内连接
df4 = pd.merge(df1,df2,how='outer',on='alpha')
df4

  若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.3 左连接

  how='left',dataframe的链接方式为左连接,我们可以理解基于左边位置dataframe的列进行连接,参数on设置连接的共有列名。   

# 单列的左连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的左连接
df5 = pd.merge(df1,df2,how='left',on='alpha')
df5

  因为df2的连接列alpha有两个'A'值,所以左连接的df5有两个'A'值,若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.4 右连接

  how='right',dataframe的链接方式为左连接,我们可以理解基于右边位置dataframe的列进行连接,参数on设置连接的共有列名。 

# 单列的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'feature1':[1,1,2,3,3,1],
'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha的右连接
df6 = pd.merge(df1,df2,how='right',on='alpha')
df6

  因为df1的连接列alpha有两个'B'值,所以右连接的df6有两个'B'值。若两个dataframe间除了on设置的连接列外并无相同列,则该列的值置为NaN。

1.5 基于多列的连接算法 

  多列连接的算法与单列连接一致,本节只介绍基于多列的内连接和右连接,读者可自己编码并按照本文给出的图解方式去理解外连接和左连接。 

多列的内连接:

# 多列的内连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'beta':['d','d','b','f'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
# 基于共同列alpha和beta的内连接
df7 = pd.merge(df1,df2,on=['alpha','beta'],how='inner')
df7

多列的右连接:

# 多列的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'beta':['d','d','b','f'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])})
print(df1)
print(df2)# 基于共同列alpha和beta的右连接
df8 = pd.merge(df1,df2,on=['alpha','beta'],how='right')
df8

1.6 基于index的连接方法

前面介绍了基于column的连接方法,merge方法亦可基于index连接dataframe。 

# 基于column和index的右连接
# 定义df1
df1 = pd.DataFrame({'alpha':['A','B','B','C','D','E'],'beta':['a','a','b','c','c','e'],'feature1':[1,1,2,3,3,1],'feature2':['low','medium','medium','high','low','high']})
# 定义df2
df2 = pd.DataFrame({'alpha':['A','A','B','F'],'pazham':['apple','orange','pine','pear'],'kilo':['high','low','high','medium'],'price':np.array([5,6,5,7])},index=['d','d','b','f'])
print(df1)
print(df2)# 基于df1的beta列和df2的index连接
df9 = pd.merge(df1,df2,how='inner',left_on='beta',right_index=True)
df9

图解index和column的内连接方法:

设置参数suffixes以修改除连接列外相同列的后缀名。

# 基于df1的alpha列和df2的index内连接
df9 = pd.merge(df1,df2,how='inner',left_on='beta',right_index=True,suffixes=('_df1','_df2'))
df9

2. join方法

  join方法是基于index连接dataframe,merge方法是基于column连接,连接方法有内连接,外连接,左连接和右连接,与merge一致。 

index与index的连接:

caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(caller)
print(other)# lsuffix和rsuffix设置连接的后缀名
caller.join(other,lsuffix='_caller', rsuffix='_other',how='inner')

join也可以基于列进行连接:

caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(caller)
print(other)# 基于key列进行连接
caller.set_index('key').join(other.set_index('key'),how='inner')

因此,join和merge的连接方法类似,这里就不展开join方法了,建议用merge方法。

3. concat方法

  concat方法是拼接函数,有行拼接和列拼接,默认是行拼接,拼接方法默认是外拼接(并集),拼接的对象是pandas数据类型。 

3.1 series类型的拼接方法

行拼接:

df1 = pd.Series([1.1,2.2,3.3],index=['i1','i2','i3'])
df2 = pd.Series([4.4,5.5,6.6],index=['i2','i3','i4'])
print(df1)
print(df2)# 行拼接
pd.concat([df1,df2])

行拼接若有相同的索引,为了区分索引,我们在最外层定义了索引的分组情况。

# 对行拼接分组
pd.concat([df1,df2],keys=['fea1','fea2'])

列拼接:

默认以并集的方式拼接:

# 列拼接,默认是并集
pd.concat([df1,df2],axis=1)

以交集的方式拼接:

# 列拼接的内连接(交)
pd.concat([df1,df2],axis=1,join='inner')

设置列拼接的列名:

# 列拼接的内连接(交)
pd.concat([df1,df2],axis=1,join='inner',keys=['fea1','fea2'])

对指定的索引拼接:

# 指定索引[i1,i2,i3]的列拼接
pd.concat([df1,df2],axis=1,join_axes=[['i1','i2','i3']])

3.2 dataframe类型的拼接方法

行拼接:

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2'],'B': ['B0', 'B1', 'B2']})
print(df1)
print(df2)# 行拼接
pd.concat([df1,df2])

列拼接:

# 列拼接
pd.concat([df1,df2],axis=1)

若列拼接或行拼接有重复的列名和行名,则报错:

# 判断是否有重复的列名,若有则报错
pd.concat([df1,df2],axis=1,verify_integrity = True)

ValueError: Indexes have overlapping values: ['key']

4. 小结

merge和join方法基本上能实现相同的功能,建议用merge。

参考

https://segmentfault.com/a/1190000018537597?utm_source=tag-newest

https://www.cnblogs.com/bigshow1949/p/7016235.html


http://chatgpt.dhexx.cn/article/V7oyHQJL.shtml

相关文章

一文搞定pandas的数据合并

作者:来源于读者投稿 出品:Python数据之道 一文搞定pandas的数据合并 在实际处理数据业务需求中,我们经常会遇到这样的需求:将多个表连接起来再进行数据的处理和分析,类似SQL中的连接查询功能。 pandas中也提供了几种方…

MySQL将多条数据合并成一条

数据库中存的是多条数据,展示的时候需要合并成一条 数据表存储形式如下图 以type分组,type相同的算一条,且保留image和link的所有数据,用groupBy只保留一条数据 解决方案:用 GROUP_CONCAT 完整语法如下 group_conc…

python数据合并

1.横向堆叠,即将两个表在x轴上拼接到一起,可以用concat函数进行。concat函数的基本语法如下: pandas.concat(objs,axis0,joinouter,join_axesNone,ignore_indexFalse, keysNone,levelsNone,namesNone,verify_integrityFalse,copyTrue) objs&…

python DataFrame数据合并 merge()、concat()方法

文章目录 merge()1.常规合并①方法1②方法2重要参数合并方式 left right outer inner准备数据‘inner(默认)outerleftright 2.多对一合并3.多对多合并 concat()1.相同字段的表首位相连2.横向表合并(行对齐)3.交叉合并 merge() 1.常…

python数据分析之pandas数据合并

🌷这一章节来介绍pandas中的DateFrame实现数据合并的操作,类似于SQL中的内连接、外连接的操作. 目录 1. 合并数据的方式2. Merge合并方法2.1 连接2.1.1 直接用on连接2.1.2 采用left_on 和 right_on连接2.1.3 采用left_index 和 right_index连接 2.2 合并…

Pandas数据合并与拼接的5种方法

pandas实现数据的合并与拼接 目录 一、DataFrame.concat:沿着一条轴,将多个对象堆叠到一起 二、DataFrame.merge:类似 vlookup 三、DataFrame.join:主要用于索引上的合并 四、Series.append:纵向追加Series 五、…

Pandas 数据处理 | 多个数据表怎么合并(merge),你了解么?

Pands 两个数据列表合并方法总结; merge() 函数用于合并两个 DataFrame 对象或 Series,数据处理时经常会用到这个函数,官网给出该函数的定义如下: pandas.merge(left, right, how: str ‘inner’, onNone, left_onNone, right_…

[Pandas] 数据合并 pd.merge

实现类似SQL的join操作,通过pd.merge()方法可以自由灵活地操作各种逻辑的数据连接、合并等操作 可以将两个DataFrame或Series合并,最终返回一个合并后的DataFrame 语法 pd.merge(left, right, how inner, on None, left_on None, right_on None,l…

6.1 多数据源合并

1.案例介绍 通过Kettle工具将A公司和B公司的手机日销售数据合并到一个数据源(数据表company)中,也就是对文件company_a.csv和数据表company_b中的数据进行合并操作,并输出到数据表company中。 2.数据准备 假设,某公…

数据合并之concat、append、merge和join

Pandas 是一套用于 Python 的快速、高效的数据分析工具。它可以用于数据挖掘和数据分析,同时也提供数据清洗功能。本文将详细讲解数据合并与连接,目录如下: ① concat 一.定义 concat函数可以在两个维度上对数据进行拼接,默认纵向…

这些数据合并的神操作,你掌握几个?

导读:在数据分析过程中,有时候需要将不同的数据文件进行合并处理。本文主要介绍三种数据合并方法。 Pandas提供了多功能、高性能的内存连接操作,本质上类似于SQL等关系数据库,比如,merge、join、concat等方法可以方便地…

6、数据的合并

目录 一、添加变量即横向合并。 二、添加个案即纵向合并 在实际工作中,为了提高效率,经常需要将一份数据分成几部分分别录入,或为了便于分析,又将几个数据文件合并成一个总的数据文件。为此,SPSS提供了两种合并数据文…

【数据科学】05 数据合并(merge、concat、combine)与数据清洗(缺失值、重复值、内容和格式)

文章目录 1. 数据合并1.1 merge()合并1.2 concat()合并1.3 combine()合并 2. 数据清洗2.1 缺失值2.2 重复值2.3 内容与格式清洗 1. 数据合并 实际应用中,需要分析的数据可能来自不同的数据集,因此在开始数据分析之前,需要先将不同的数据集合…

Gradle 入门

1、Gradle 入门 1.1 Gradle 简介 Gradle 是一款 Google 推出的基于JVM、通用灵活的项目构建工具,支持 Maven,JCenter 多种第三方仓库;支持传递性 依赖管理、废弃了繁杂的 xml 文件,转而使用简洁的、支持多种语言(例如:java、gro…

Gradle【扫盲】之简易使用教程

官网地址 https://gradle.org/版本选择 如果使用的是idea,可以在idea的plug目录下查看支持的gradle的版本: 进入目录: 那我们到官网下载对应版本的gradle即可 Gradle下载及配置 进入官网,查看发行版本 选择对应的安装包 b…

Linux 安装gradle完整教程

Linux 安装gradle 1.下载gradle https://gradle.org/install/ 选择版本下载 点击下载 也可以在这里下载历史版本 https://services.gradle.org/distributions/ 2.将包上传到服务器,我这里下载的包是6.7的你们可以下载各自需要的版本 zip包解压 unzip gradle-8.…

gradle快速入门

1.Gradle 入门 1.1 Gradle 简介 Gradle 是一款Google 推出的基于JVM、通用灵活的项目构建工具,支持Maven,JCenter 多种第三方仓库;支持传递性依赖管理、废弃了繁杂的xml 文件,转而使用简洁的、支持多种语言(例如:java、groovy 等…

Gradle下载安装教程

前言 1.gradle和maven一样都是用来构建java程序的,maven2004年开始兴起,gradle2012年开始诞生,既然已经有了maven这么成熟的构建工具为什么还有gradle的诞生呢,因为gradle有很多地方比maven做的更好,例如gradle采用gro…

Gradle 15分钟入门教程

1-Gradle入门介绍 在阅读或实践本文中的实例前,必须首先确保已将Gradle插件安装到Eclipse中。如果没有,可以点击下面的链接查看Gradle安装说明: - http://www.yiibai.com/gradle/how-install-gradle-windows.html 本教程的目标: …

gradle安装与入门

1. Gradle安装(本地也可不安装,不安装gradle配置选择gradle wrapper) 下载地址:http://services.gradle.org/distributions/ 下载你所需要对应的版本,gradle-4.6.1-bin.zip 下载后解压到你想要的目录 设置环境变量 新建系统变量&…