灰色关联分析法详解及python实践

article/2025/10/19 6:34:47

1. 关于灰色关联分析

1.1. 什么是灰色关联分析

灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。

也就是说,灰色关联分析的研究对象往往是一个系统。系统的发展会受到多个因素的影响。我们常常想知道,在众多的影响因素中,哪些是主要因素,哪些是次要因素;哪些因素影响大,哪些因素影响小;哪些具有促进作用,哪些具有抑制作用等等。

关联度,是表征两个事物之间的关联程度,在数学上是指两函数相似的程度。

1.2. 灰色关联分析的使用

通常可以运用此方法来分析各个因素对于结果的影响程度,也可以运用此方法解决随时间变化的综合评价类问题,其核心是按照一定规则确立随时间变化的母序列(参考列),把各个评估对象随时间的变化作为子序列,求各个子序列与母序列(参考列)的相关程度,依照相关性大小得出结论。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度,与参考数列关联度越大的比较数列,其发展方向和速率与美考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况,其基本思想是将评价指标原始观测数进行无量细化处理、计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

1.3. 灰色关联分析的基本特征

(1). 总体性

灰色关联度虽是数据序列几何形状的接近程度的度量,但它一般强调的是若干个数据序列对一个既定的数据序列接近的相对程度,即要排出关联度大小的顺序,这就是总体性,其将各因素统一置于系统之中进行比较与分析。

(2). 非对称性

在同一系统中,甲对乙的关联度,并不等于乙对甲的关联度,这较真实地反映了系统中因素之间真实的灰关系。

(3). 非唯一性
关联度随着参考序列不同、因素序列不同、原始数据处理方法不同、数据多少不同而不同。

(4). 动态性
因素间的灰色关联度随着序列的长度不同而变化,表明系统在发展过程中,各因素之间的关联关系也随着时间不断变化。

1.4. 灰色关联分析与大数据及其他数理统计比较

数理统计中常常使用回归分析、方差分析、主成分分析等来探究这个问题。但上述的方法有一些共同的不足之处。例如这些方法都要求大量的数据,数据小则结果没有太大意义;有时候还会要求样本服从某个特殊分布,或者出现量化结果与定性分析不符合的情况。而灰色关联分析则可以较好地应对这些问题。

灰色关联分析对样本量的多少和样本有无规律并没有要求(当然样本量也不能太少,就两、三个样本还分析什么),量化结果基本上与定性分析相符合。灰色关联分析的基本思想是,根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大,反之就越小。

对于上述原理,简单翻译一下,就是研究两个或多个序列(序列可以理解为系统中因素或者指标)构成的曲线的几何相似程度。越相似,越说明他们的变化具有某种紧密的联系,也就是关联度高。所以这个方法也几乎是从纯数据的角度去研究关联性,如果两个没啥关系的指标,在曲线形状上表现得极为相似,那灰色关联分析就会认为二者关联程度很高。当然这只是一个比较极端的例子,对于一般的数据或者系统,用曲线形状来衡量关联度,也是有一定的道理的。

2. 灰色关联分析的过程

2.1.根据分析目的确定分析指标体系,收集分析数据。

下表为某地区国内生产总值的统计数据(以百万元计),问该地区从2000年到2005年之间哪一种产业对GDP总量影响最大。

年份国内生产总值第一产业第二产业第三产业
20001988386839763
20012061408846808
20022335422960953
2003275048212581010
2004335651115771268
2005380656118931352

在这里插入图片描述

  • 谁与国内生产总值关联度最高
  • 哪个产业发展的更好
  • 哪年发展的较优秀

n n n个数据序列形成如下矩阵:

( X 1 ′ , X 2 ′ , . . . , X n ′ ) = ( x 1 ′ ( 1 ) x 2 ′ ( 1 ) . . . x n ′ ( 1 ) x 1 ′ ( 2 ) x 2 ′ ( 2 ) . . . x n ′ ( 2 ) . . . . . . . . . . . . x 1 ′ ( m ) x 2 ′ ( m ) . . . x n ′ ( m ) ) (X'_1,X'_2,...,X'_n)=\begin{pmatrix} x'_1(1) & x'_2(1) & ... & x'_n(1)\\ x'_1(2) & x'_2(2) & ... & x'_n(2)\\ ... & ... & ... & ...\\ x'_1(m) & x'_2(m) & ... & x'_n(m) \end{pmatrix} (X1,X2,...,Xn)= x1(1)x1(2)...x1(m)x2(1)x2(2)...x2(m)............xn(1)xn(2)...xn(m)

其中 m m m为指标的个数, X i ′ = ( x i ′ ( 1 ) , x i ′ ( 2 ) , . . . , x i ′ ( m ) ) T , i = 1 , 2 , . . . , n X'_i=(x'_i(1),x'_i(2),...,x'_i(m))^T, i=1,2,...,n Xi=(xi(1),xi(2),...,xi(m))T,i=1,2,...,n

2.2.确定参考数据列

通常,根据分析目标确定参考数据列:

目标一,指标排序选优,指标体系中的指标与对标指标的关联度的大小,并可以数值大小排序。

按业务选择理想比较基准,例如在此需要分别将三种产业与国内生产总值比较计算其关联程度,故参考序列为国内生产总值。

目标二,综合评价,评价指标,给出量化数值,以及的优良顺序。

若是解决综合评价问题时则参考序列可能需要自己生成,通常选定每个指标或时间段中所有子序列中的最佳值组成的新序列为参考序列。
参考数据列应该是一个理想的比较标准,可以以各指标的最优值(或最劣值)构成参考数据列,也可根据评价目的选择其它参照值.

  • 谁与国内生产总值关联度最高?选择国内生产总值列为参考列。
  • 哪个产业发展的更好,选择每个指标的最优值(最大)值,手工生成参考数列。
  • 哪年发展的较优秀,选择各个年度的最优值,手工生产参考数列。

参考数列记作:
X 0 ′ = ( x 0 ′ ( 1 ) , x 0 ′ ( 2 ) , . . . , x 0 ′ ( m ) ) X'_0=(x'_0(1),x'_0(2),...,x'_0(m)) X0=(x0(1),x0(2),...,x0(m))

2.3.对指标数据进行无量纲化

由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

常用无量纲方法之一:

x i ( k ) = x i ′ ( k ) 1 m ∑ k = 1 m x i ′ ( k ) x_{i}(k)=\frac{x'_{i}(k)}{\frac{1}{m}\sum_{k=1}^{m}x'_{i}(k) } xi(k)=m1k=1mxi(k)xi(k)

无量纲化后的数据序列形成如下矩阵:

( X 1 , X 2 , . . . , X n ) = ( x 1 ( 1 ) x 2 ( 1 ) . . . x n ( 1 ) x 1 ( 2 ) x 2 ( 2 ) . . . x n ( 2 ) . . . . . . . . . . . . x 1 ( m ) x 2 ( m ) . . . x n ( m ) ) (X_1,X_2,...,X_n)=\begin{pmatrix} x_1(1) & x_2(1) & ... & x_n(1)\\ x_1(2) & x_2(2) & ... & x_n(2)\\ ... & ... & ... & ...\\ x_1(m) & x_2(m) & ... & x_n(m) \end{pmatrix} (X1,X2,...,Xn)= x1(1)x1(2)...x1(m)x2(1)x2(2)...x2(m)............xn(1)xn(2)...xn(m)

2.4.求解参考序列和特征序列之间的灰色关联系数值

(1)求差序列

逐个计算每个被评价对象指标序列(比较序列)与参考序列对应元素的绝对差值
Δ x i ( k ) = ∣ x i ( k ) − x 0 ( k ) ∣ , k = 1 , 2 , . . . m ; i = 1 , 2 , . . . , n \Delta x_i(k)=|x_i(k)-x_0(k)|, k=1,2,...m ; i=1,2,...,n Δxi(k)=xi(k)x0(k),k=1,2,...m;i=1,2,...,n

其中 , n n n为被评价对象的个数。

(2)求两极差
m i n i m i n k ∣ x 0 ( k ) − x i ( k ) ∣ \underset{i}{min} \underset{k}{min} |x_{0}(k)-x_{i}(k)| iminkminx0(k)xi(k)

m a x i m a x k ∣ x 0 ( k ) − x i ( k ) ∣ \underset{i}{max} \underset{k}{max} |x_{0}(k)-x_{i}(k)| imaxkmaxx0(k)xi(k)

(3)求关联系数
ζ i ( k ) = m i n i m i n k ∣ x 0 ( k ) − x i ( k ) ∣ + ρ ⋅ m a x i m a x k ∣ x 0 ( k ) − x i ( k ) ∣ ∣ x 0 ( k ) − x i ( k ) ∣ + ρ ⋅ m a x i m a x k ∣ x 0 ( k ) − x i ( k ) ∣ \zeta _{i}(k)=\frac{\underset{i}{min} \underset{k}{min} |x_{0}(k)-x_{i}(k)|+\rho\cdot \underset{i}{max} \underset{k}{max} |x_{0}(k)-x_{i}(k)|}{|x_{0}(k)-x_{i}(k)|+\rho\cdot \underset{i}{max} \underset{k}{max} |x_{0}(k)-x_{i}(k)|} ζi(k)=x0(k)xi(k)+ρimaxkmaxx0(k)xi(k)iminkminx0(k)xi(k)+ρimaxkmaxx0(k)xi(k)

其中, k = 1 , . . . , m k=1,...,m k=1,...,m ρ \rho ρ为分辨系数,取值在 ( 0 , 1 ) (0,1) (0,1),若 ρ \rho ρ越小,关联系数间差异越大,区分能力越强,通常 ρ \rho ρ取0.5。

2.5.计算关联度

对各评价对象(比较指标序列)分别计算各个指标与参考序列对应元素的关联系数的均值,以反映各评价对象与参考序列的关联关系,并称其为关联序,记为:

r i = 1 m ∑ k = 1 m ζ i ( k ) r_i = \frac{1}{m}\sum_{k=1}^{m} \zeta _{i}(k) ri=m1k=1mζi(k)

2.6.综合评价

如果各指标在综合评价中所起的作用不同,可对关联系数求加权平均值即:

r i = 1 m ∑ k = 1 m W i ζ i ( k ) r_i = \frac{1}{m}\sum_{k=1}^{m} W_i\zeta _{i}(k) ri=m1k=1mWiζi(k)

其中, W i W_i Wi为各个指标的权重。

3. Python实践过程

3.1. 定义关联度计算函数

# dd为输入数据表,m为参数列,默认为0,如果flag为非None,则可任意值,无意义
# flag 标识参考列方式,默认None是按列取值
# flag = 'MAX' 按最大值取值
# flag = 'MIN' 按最小值取值def GRA(dd, m=0, flag=None):# 读取为df格式#dd = dimensionlessProcessing(dd)x_mean=dd.mean(axis=0)#print(x_mean)for i in range(len(dd.columns)):dd.iloc[:,i] = dd.iloc[:,i]/x_mean[i]    # 参考要素if flag==None:std = dd.iloc[:, m]  # 为参考要素dd.drop(dd.columns[m],axis=1,inplace=True)        elif flag=='MAX':std = dd.max(axis=1)elif flag=='MIN':std = dd.min(axis=1)else:print('flag eorro!')return Noneprint(std)print(dd)shape_n, shape_m = dd.shape[0], dd.shape[1]  # 计算行列# 与参考要素比较,相减a = zeros([shape_m, shape_n])for i in range(shape_m):for j in range(shape_n):a[i, j] = abs(dd.iloc[j, i] - std[j])# 取出矩阵中最大值与最小值print(a)c, d = a.max().max(), a.min().min()print(c,d)# 计算关联系数result = (d + 0.5 * c) / (a + 0.5 * c)# 求均值,得到灰色关联度,并返回result_list = [mean(result[i, :]) for i in range(shape_m)]return pd.DataFrame(result_list)

3.2. 指标排序

计算关联度及图例:

import pandas as pd
import numpy as np
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inlinex = pd.DataFrame([[1988,2061,2335,2750,3356,3806],[386,408,422,482,511,561], [839,846,960,1258,1577,1893], [763,808,953,1010,1268,1352]])
x.columns = ['2000','2001','2002','2003','2004','2005']
x.index = ['国内生产总值','第一产业','第二产业','第三产业']
dd = x.Tplt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False  
dd.plot(kind='line',figsize=(8,6),grid=True,marker='o')
dd

在这里插入图片描述

df = x.iloc[:,:].T.copy()print(df)
data_gra = GRA(df, m=0)
data_gra

参考列:
在这里插入图片描述
无量纲矩阵:
在这里插入图片描述

求解差序列矩阵:
在这里插入图片描述

求解两级差:0.186163, 0.000628。

关联度序:
第一产业: 0.508432,第二产业:0.624296,第三产业:0.757300

3.3. 综合评价

df = x.iloc[:,:].T.copy()print(df)
data_gra = GRA(df, flag='MAX')
data_gra

求解两级差:0.325323, 0.0

综合评价:

  • 国内生产总值:0.671001
  • 第一产业:0.788028
  • 第二产业:0.730317
  • 第三产业:0.699678

4. 总结

指标排序,可以得到 r 0 1 = 0.5088 , r 0 2 = 0.6248 , r 0 3 = 0.7577 r_01 = 0.5088,r_02= 0.6248, r_03= 0.7577 r01=0.5088r02=0.6248r03=0.7577,通过比较三个子指标序列与参考序列的关联度可以得出结论:该地区在2000年到2005年期间的国内生产总值受到第三产业的影响最大。

综合评价,可以得到 r 0 = 0.671001 , r 1 = 0.788028 , r 2 = 0.730317 , r 3 = 0.699678 r0=0.671001,r1=0.788028 ,r2=0.730317 ,r3=0.699678 r0=0.671001r1=0.788028r2=0.730317r3=0.699678,通过比较指标综合评价可以得出结论:该地区在2000年到2005年期间,第一产业的发展最好。

灰色关联分析主要有两个作用,一是进行系统发展影响因素分析,诊断影响系统发展的重要因素。第二个作用就是用于综合评价问题,给出研究对象或者方案的优劣排名,可用于经营管理咨询工作。

灰色关联分析方法的优点在于思路明晰,可以在很大程度上减少由于信息不对称带来的损失,并且对数据要求较低,工作量较少;其主要缺点在于要求需要对各项指标的最优值进行现行确定,主观性过强,同时部分指标最优值难以确定。

5. 后续应用思考

综合评价2000年到2005年间发展情况,相当于2000年到2005年成为6项指标。

df = x.iloc[:,:].copy()print(df)
data_gra = GRA(df, flag='MAX')
data_gra

综合评价计算结果是:
2000, 0.731977
2001, 0.764135
2002, 0.763014
2003, 0.673676
2004, 0.672552
2005, 0.728462
结论是2001年综合评价最优,再分析此时的第一产业、第二产业、第三产业构成。

如此,把灰色关联分析方法应用到企业经营分析上,由于企业经营数据偏少,大数据方法不太适应,因此,我们把企业好比一个灰色系统,挖掘有限数据的价值,对可识别的指标进行分析。

由于作者水平有限,欢迎留言讨论!

参考:

[1]. Font Tian. Python实现 灰色关联分析 与结果可视化. CSDN博客. 2018.06
[2]. 我不爱机器学习. python实现灰色关联法(GRA). CSDN博客. 2022.11
[3]. spssau. [学习资料] 灰色关联法如何分析?. 经管之家. 2022.09
[4]. 李响Superb. 机器学习(MACHINE LEARNING)灰色关联分析(GRA). 51CTO博客. 2021.06
[5]. 木子. 灰色关联算法原理与实现详解. 知乎. 2022.04
[6]. 回到唐朝当少爷. 清风数学建模Python代码——灰色关联分析. 哔哩哔哩. 2022.10
[7]. 灰色关联分析. MBA智库百科
[8]. 小白. 数学建模笔记——评价类模型之灰色关联分析. 知乎. 2020.07
[9]. 杨辰, 高寒歌. 灰色预测模型与灰色关联度分析在公司运营中的应用. 财经与管理. 2019.03. 12-18
[10]. 王本刚. 灰色关联和层次分析法在加油站安全评价中的应用. 中国石油和化工标准与质量. 2017,(16)
[11]. 方少林,孟路园,霍俊. 基于熵权法与灰色关联分析法的加油站油罐区安全评价. 山东化工. 2020,(17)


http://chatgpt.dhexx.cn/article/SoMOtp5C.shtml

相关文章

python灰色关联度分析_灰色关联分析法 python

广告关闭 腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元! 本文2290字,预计阅读需10分钟; 关联分析(association analysis)主要用于发现隐藏在大型数据集中的有意义的联系,它起源于商品销售领域,“啤酒与尿布”的故…

灰色关联分析应用

参考学习b站:数学建模学习交流 感觉这篇博客写的很好:灰色关联分析Matlab代码实现 看完后自己尝试运行的一下,发现和自己本地的matlab代码运行结果不同,就把其中细节写到这篇博客里了 运行上述博客应用2的代码,将更…

灰色关联案例与代码

案例 求他们之间的关联度,并且大小排序。 代码 写了注释,自行查看,换了案例,你只需要修改这一部分即可: 因为读取不一样了嘛,你总要改改数字。 clc; close; clear all; xxlsread(gray_data1.xlsx); xx(:,2:end);%所…

灰色关联法 —— python

目录 1.简介 2.算法详解 2.1 数据标准化 2.2 计算灰色相关系数 2.3 计算灰色关联度系数 3.实例分析 3.1 读取数据 3.2 数据标准化 3.3 绘制 x1,x4,x5,x6,x7 的折线图 3.4 计算灰色相关系数 完整代码 1.简介 对于两个系统之间的因素,其随时间或不同对象而变…

数学建模之灰色关联分析(GRA)

本文参考的是司守奎,孙兆亮主编的数学建模算法与应用(第二版) 灰色关联分析不仅能够用做关联分析,也能够用于评价。 其具体分析步骤如下: 第一步,需要确定评价对象和参考数列。 评价对象一般指的就是待分…

【DOM】DOM操作之如何添加、删除、替换元素_04

目录 一. 添加删除替换元素 1. 添加新元素: 3步: (1). 创建一个新的空元素对象 (2). 为新元素设置必要的属性: 新元素.属性名"属性值" (3). 将新元素添加到DOM树 2. 示例: 动态创建a元素和input元素 3. 示例: 动态生成表格内容 4. 优化 5. 删除元素: 父元素.re…

DOM操作_获取元素

概述 DOM (Document objectModal) :文档对象模型。 DOM;是浏览器提供的(浏览器特有),专[ ]用来操作网页内容的一些JS对象。 目的:让我们可以使用Js/TS代码来操作页面(HTML) 内容,让页面“动”起来,从而实现Web开发。 HTML:超文本标记语言…

DOM操作class属性的方法

新增标签对象.classList.add(新增属性值) 删除 标签对象.classList.remove(删除属性值) 替换标签对象.classList.replace(原始 , 新的) 切换标签对象.classList.toggle(切换属性值)有执行删除,没有执行新增 <body><div class "box box2 "></div&…

js DOM操作自定义属性

自定义属性&#xff1a;在日常开发中&#xff0c;html的内置属性已经无法满足程序员的日常开发&#xff0c;所以需要我们自己定义属性&#xff0c;H5给我们新增了自定义属性&#xff0c;为了防止自定义属性和内置属性引起歧义&#xff0c;所以H5规定自定义属性以data-开头定义。…

JavaScript之DOM操作获取元素、事件、操作元素、节点操作

什么是 DOM&#xff1f; 文档对象模型&#xff08;Document Object Model&#xff0c;简称 DOM&#xff09;&#xff0c;是 W3C 组织推荐的处理可扩展标记语言&#xff08;HTML或者XML&#xff09;的标准编程接口。W3C 已经定义了一系列的 DOM 接口&#xff0c;通过这些 DOM 接…

DOM 基础操作

文章目录 前言一、DOM 简介1.1 什么是 DOM 二、获取元素2.1 如何获取页面元素2.2 根据 ID 获取2.3 根据标签名获取2.4 通过 HTML5 新增的方法获取2.5 获取特殊元素&#xff08;body&#xff0c;html&#xff09; 三、事件基础3.1事件三要素3.2 执行事件的步骤3.3常见的鼠标事件…

[js]DOM操作

DOM也就是文档对象模型&#xff1a;document object model 主要用来动态操作HTML的元素节点&#xff0c;dom操作文档是居于DOM树为根据操作的。DOM树为html整体结构框架&#xff0c;其中有各种嵌套标签&#xff0c;最典型的就是以body为主容器&#xff0c;在body内部设置各种元…

DOM操作总结  (。♥ᴗ♥。) 哇!!

知识点 DOM 本质DOM 节点操作DOM 结构操作DOM 性能 前言 各种框架层出不穷&#xff0c;但DOM操作一直都会是前端工程师的基础&#xff0c;必备知识。 只会Vue和React等框架&#xff0c;而不懂DOM操作的前端程序员们。。。 DOM的本质&#xff1f; Do you know&#xff1f; 首…

JavaScript中DOM操作

Web前端基础修炼 HTML基本标签详解与运行截图 CSS基本操作详解及截图演示 JavaScript基础(ECMAScript) JavaScript中DOM操作 JavaScript中BOM操作 目录 DOM介绍 获取元素 操作元素 节点操作 DOM介绍 JavaScript一共包括三部分&#xff0c;分别是ECMAScript也就是Jav…

Dom操作的性能优化

在 开发过程中&#xff0c;或多或少都会遇到要操作dom的情况&#xff0c;而dom操作多多少少都会耗费一些性能&#xff0c;那今天我们就一起来看看在操作dom的时候有哪些性能优化方式吧&#xff1a; 1.选择性能更好的获取dom元素的方法 首先&#xff0c;我们一起来看看&#xf…

常见的DOM操作有哪些

这里是修真院前端小课堂&#xff0c;本篇分析的主题是 【常见的DOM操作有哪些】 这里是修真院前端小课堂&#xff0c;每篇分享文从 【背景介绍】【知识剖析】【常见问题】【解决方案】【编码实战】【扩展思考】【更多讨论】【参考文献】 八个方面深度解析前端知识/技能&…

js中Dom操作

简单的Dom获取 什么是Dom操作&#xff1f; 1.DOM使一个"使程序"和"脚本"有能力的"动态地访问"和"更新文档内容结构"&#xff0c;以及"样式"的平台和语言中立的接口. 2.在HTML和JavaScript的学习中&#xff0c;DOM操作可谓时…

TypeScript Dom操作

文章目录 介绍获取元素类型断言获取多个DOM元素操作文本内容操作样式操作事件 介绍 DOM 是浏览器提供的&#xff08;浏览器特有)&#xff0c;专门用来操作网页内容的一些JS对象(API) 通过DOM操作&#xff0c;可以让Js/Ts控制页面&#xff08;(HTML)内容&#xff0c;让页面“动…

JavaScript DOM操作

文章目录 JavaScript DOM操作DOM操作元素DOM查询修改元素内容/属性获取元素节点 DOM的增删改 DOM操作CSS内联样式获得当前正在显示的样式 DOM的事件操作事件对象事件对象的属性 事件的冒泡和事件的委托事件冒泡事件委派事件的传播事件的绑定 JavaScript DOM操作 DOM操作元素 …

DOM的操作

一、DOM的操作 1、复制节点 cloneNode(deep) 参数deep是boolean类型&#xff0c;true/false true&#xff1a;表示深度复制&#xff08;将节点及其子节点都进行复制&#xff09; --- 深拷贝 false&#xff1a;表示浅复制&#xff08;只复制节点而不复制子节点&#xff09; ----…