时序模型(一)—— TCN 时间卷积网络

article/2025/11/5 1:52:39

 

一、 概述

TCN是18年提出的时序卷积神经网络模型。

时序问题建模,通常采用RNN循环神经网络及其相关变种,比如LSTM、GRU等,这里将卷积神经网络通过膨胀卷积达到抓取长时依赖信息的效果,TCN在一些任务上甚至能超过RNN相关模型。    

参考论文:An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

Github:https://github.com/LOCUSLAB/tcn

二、原理

2.1 因果卷积

先来介绍下因果卷积(Causal Convolution)

preview

对于上一时刻的值,只依赖下一层时刻及其之前的值。因果卷积不能看到未来的数据,是单向的结构,有了前面的因才有后面的果。但是这种模型只能捕捉固定前面几个时刻的值,如果想要捕获更长距离的信息,则需要增加网络层数,于是便有了膨胀卷积的思想。

2.2 膨胀卷积

膨胀卷积(Dilated Convlution), 有的地方也称扩张卷积。

膨胀卷积允许卷积时的输入存在间隔采样,采样率受图中的d控制。 最下面一层的d=1,表示输入时每个点都采样,中间层d=2,表示输入时每2个点采样一个作为输入。一般来讲,越高的层级使用的d的大小越大。所以,膨胀卷积使得有效窗口的大小随着层数呈指数型增长。这样卷积网络用比较少的层,就可以获得很大的感受野。

2.3 残差链接(Residual Connections)

残差链接使得网络可以跨层传递信息,避免了层数过多信息丢失的问题。文章构建爱你了一个残差块来代替一层的卷积。如上图,一个残差块包含两层卷积和非线性映射,每层中还加入了WeightNorm和Dropout来正则化网络。

 

三、 实验

四、 优缺点

优点 :

    (1)并行性。当给定一个句子时,TCN可以将句子并行的处理,而不需要像RNN那样顺序的处理。

    (2)灵活的感受野。TCN的感受野的大小受层数、卷积核大小、扩张系数等决定。可以根据不同的任务不同的特性灵活定制。

    (3)稳定的梯度。RNN经常存在梯度消失和梯度爆炸的问题,这主要是由不同时间段上共用参数导致的,和传统卷积神经网络一样,TCN不太存在梯度消失和爆炸问题。

    (4)内存更低。RNN在使用时需要将每步的信息都保存下来,这会占据大量的内存,TCN在一层里面卷积核是共享的,内存使用更低。

缺点:

    (1)TCN 在迁移学习方面可能没有那么强的适应能力。这是因为在不同的领域,模型预测所需要的历史信息量可能是不同的。因此,在将一个模型从一个对记忆信息需求量少的问题迁移到一个需要更长记忆的问题上时,TCN 可能会表现得很差,因为其感受野不够大。

    (2)论文中描述的TCN还是一种单向的结构,在语音识别和语音合成等任务上,纯单向的结构还是相当有用的。但是在文本中大多使用双向的结构,当然将TCN也很容易扩展成双向的结构,不使用因果卷积,使用传统的卷积结构即可。

    (3)TCN毕竟是卷积神经网络的变种,虽然使用扩展卷积可以扩大感受野,但是仍然受到限制,相比于Transformer那种可以任意长度的相关信息都可以抓取到的特性还是差了点。TCN在文本中的应用还有待检验。

 

五、 参考链接:

TCN-时间卷积网络 https://blog.csdn.net/qq_27586341/article/details/90751794

TCN 时间卷积网络 https://zhuanlan.zhihu.com/p/51246745?utm_source=wechat_session&utm_medium=social&s_r=0  


http://chatgpt.dhexx.cn/article/PAbKF3Op.shtml

相关文章

【学习日志】【TCN】时间序列卷积神经网络(1)

1. ask bing(Temporal Convolutional Network) 问:“我对CNN、RNN、TCN等神经网络没有任何基础,你能直观地给我讲一下TCN的结构、输入输出和原理吗?” bing对TCN的解释如下: TCN是一种用于处理序列数据的神…

LSTM的备胎,用卷积处理时间序列——TCN与因果卷积(理论+Python实践)

什么是TCN TCN全称Temporal Convolutional Network,时序卷积网络,是在2018年提出的一个卷积模型,但是可以用来处理时间序列。 卷积如何处理时间序列 时间序列预测,最容易想到的就是那个马尔可夫模型: P ( y k ∣ x…

python深度学习之TCN实例

1.TCN的介绍 近些年,关于时间序列、自然语言处理等任务大家一般都会想到RNN、LSTM、GRU,一维CNN以及后面延伸出的Bi-Lstm、ConvLstm等等,这是因为RNN天生可以记住以前时段的信息,而传统的神经网络并不具有这个功能。卷积神经网络…

时间卷积网络TCN:时间序列处理的新模型

这篇文章回顾了基于TCN的解决方案的最新创新。我们首先介绍了一个运动检测的案例研究,并简要回顾了TCN架构及其相对于传统方法的优势,如卷积神经网络(CNN)和递归神经网络(RNN)。然后,我们介绍了一些使用TCN的应用,包括改进交通预测…

TCN论文及代码解读总结

前言:传统的时序处理,普遍采用RNN做为基础网络模型,如其变体LSTM、GRU、BPTT等。但是在处理使用LSTM时时序的卷积神经网络 目录 论文及代码链接一、论文解读1、 摘要2、引言(摘)3、时序卷积神经网络(Temporal Convolutional Networks)3.1 因果…

轨道交通中TCN、TRDP、TSN的理解

轨道交通中TCN、TSN、TRDP的理解 1 TCN2 TSN3 TRDP———————————————————————— 1 TCN TCN(Train Communication Network)是列车通信网络,是列车通信网络的总称。 在IEC 61375-1 以及GB/T 28029.1中都详细的介绍了列车…

深度学习 + 论文详解: TCN_时间卷积网络_原理与优势

论文链接 TCN: https://arxiv.org/pdf/1803.01271.pdf p.s. TCN stands for Temporal Convolutional Network. 它是除了 RNN architecture 之外的第二种可以分析时间性数据的架构 更多文章将在公众号:AI 算法辞典 首发! 前言 RNN 从最一开始发展以来…

【python量化】用时间卷积神经网络(TCN)进行股价预测

写在前面 下面这篇文章首先主要简单介绍了目前较为先进的时间序列预测方法——时间卷积神经网络(TCN)的基本原理,然后基于TCN的开源代码,手把手教你如何通过时间卷积神经网络来进行股价预测,感兴趣的读者也可以基于此模…

时域卷积网络(Temporal Convolutional Network,TCN)

TCN基本结构 时域卷积网络(Temporal Convolutional Network,TCN)由Shaojie Bai et al.在2018年提出的,可以用于时序数据处理,详细内容请看论文。 1.因果卷积(Causal Convolution) 因果卷积如上…

时域卷积网络TCN详解:使用卷积进行序列建模和预测

CNN经过一些简单的调整就可以成为序列建模和预测的强大工具 尽管卷积神经网络(CNNs)通常与图像分类任务相关,但经过适当的修改,它已被证明是进行序列建模和预测的有价值的工具。在本文中,我们将详细探讨时域卷积网络(TCN)所包含的基本构建块&…

TCN代码详解-Torch (误导纠正)

1. 绪论 TCN网络由Shaojie Bai, J. Zico Kolter, Vladlen Koltun 三人于2018提出。对于序列预测而言,通常考虑循环神经网络结构,例如RNN、LSTM、GRU等。他们三个人的研究建议我们,对于某些序列预测(音频合…

时序CNN基础——TCN

自用~~笔记~~ 知识补充: 空洞卷积(膨胀卷积)——Dilated Conv 在标准卷积的基础上注入空洞,以此来增加感受野(reception field)。因此增加一个超参:膨胀率,指kernel的间隔数量。 因…

时间卷积网络(TCN):结构+pytorch代码

文章目录 TCNTCN结构1-D FCN的结构因果卷积(Causal Convolutions)膨胀因果卷积(Dilated Causal Convolutions)膨胀非因果卷积(Dilated Non-Causal Convolutions)残差块结构 pytorch代码讲解 TCN TCN(Temporal Convolutional Network)是由Shaojie Bai et al.提出的,p…

时间序列预测——时序卷积网络(TCN)

本文展示了使用时序卷积网络(TCN)进行时间序列预测的全过程,包含详细的注释。整个过程主要包括:数据导入、数据清洗、结构转化、建立TCN模型、训练模型(包括动态调整学习率和earlystopping的设置)、预测、结…

TCN-时间卷积网络

目录 一、引言 二、时序卷积神经网络 2.1 因果卷积(Causal Convolution) 2.2 膨胀卷积(Dilated Convolution) 2.3 残差链接(Residual Connections) 三、讨论和总结 1. TCN的优点 2. TCN的缺点 参考…

时间卷积网络TCN:CNN也可以处理时序数据并且比LSTM更好

本文回顾了 Shaojie Bai、J. Zico Kolter 和 Vladlen Koltun 撰写的论文:An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling。 TCN源代码:https://github.com/locuslab/TCN 文章目录 1. 序列建模2. 因果…

TCN(Temporal Convolutional Network,时间卷积网络)

1 前言 实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。 在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个…

机器学习进阶之 时域/时间卷积网络 TCN 概念+由来+原理+代码实现

TCN 从“阿巴阿巴”到“巴拉巴拉” TCN的概念(干嘛来的!能解决什么问题)TCN的父母(由来)TCN的原理介绍上代码! 1、TCN(时域卷积网络、时间卷积网络)是干嘛的,能干嘛 主…

htop与top的区别

总览: 什么是htop top和htop的区别 htop和top的比较 在centos7上安装htop 下载htop源码交叉编译安装 如何使用htop命令 更改htop刷新时间间隔 htop命令的快捷键 什么是htop? htop是一个交互式和实时监视进程查看器的linux编写的 它取代了Unix程序的top …

AIX的topas命令详解

说明 topas命令的说明可以直接执行man topas了解,或者直接看IBM给的 原始文档,路径为:https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.cmds5/topas.htm 命令详解 先上在AIX服务器上执行topas命令后的图片 区域1&…