用户态和内核态:用户态线程和内核态线程有什么区别?

article/2025/11/10 17:52:45

转载

文章来源于 拉钩教育 重学操作系统 林䭽 用户态和内核态:用户态线程和内核态线程有什么区别?

什么是用户态和内核态

Kernel 运行在超级权限模式(Supervisor Mode)下,所以拥有很高的权限。按照权限管理的原则,多数应用程序应该运行在最小权限下。因此,很多操作系统,将内存分成了两个区域:

  1. 内核空间(Kernal Space),这个空间只有内核程序可以访问;

  2. 用户空间(User Space),这部分内存专门给应用程序使用。

用户态和内核态

用户空间中的代码被限制了只能使用一个局部的内存空间,我们说这些程序在用户态(User Mode) 执行。内核空间中的代码可以访问所有内存,我们称这些程序在内核态(Kernal Mode) 执行。

系统调用过程

如果用户态程序需要执行系统调用,就需要切换到内核态执行。下面我们来讲讲这个过程的原理。
在这里插入图片描述
如上图所示:内核程序执行在内核态(Kernal Mode),用户程序执行在用户态(User Mode)。当发生系统调用时,用户态的程序发起系统调用。因为系统调用中牵扯特权指令,用户态程序权限不足,因此会中断执行,也就是 Trap(Trap 是一种中断)。

发生中断后,当前 CPU 执行的程序会中断,跳转到中断处理程序。内核程序开始执行,也就是开始处理系统调用。内核处理完成后,主动触发 Trap,这样会再次发生中断,切换回用户态工作。

线程模型

上面我们学习了用户态和内核态,接下来我们从进程和线程的角度进一步思考本课时开头抛出的问题。

进程和线程

一个应用程序启动后会在内存中创建一个执行副本,这就是进程。Linux 的内核是一个 Monolithic Kernel(宏内核),因此可以看作一个进程。也就是开机的时候,磁盘的内核镜像被导入内存作为一个执行副本,成为内核进程。

进程可以分成用户态进程和内核态进程两类。用户态进程通常是应用程序的副本,内核态进程就是内核本身的进程。如果用户态进程需要申请资源,比如内存,可以通过系统调用向内核申请。

那么用户态进程如果要执行程序,是否也要向内核申请呢?

程序在现代操作系统中并不是以进程为单位在执行,而是以一种轻量级进程(Light Weighted Process),也称作线程(Thread)的形式执行。

一个进程可以拥有多个线程。进程创建的时候,一般会有一个主线程随着进程创建而创建。
在这里插入图片描述
如果进程想要创造更多的线程,就需要思考一件事情,这个线程创建在用户态还是内核态。

你可能会问,难道不是用户态的进程创建用户态的线程,内核态的进程创建内核态的线程吗?

其实不是,进程可以通过 API 创建用户态的线程,也可以通过系统调用创建内核态的线程,接下来我们说说用户态的线程和内核态的线程。

用户态线程

用户态线程也称作用户级线程(User Level Thread)。操作系统内核并不知道它的存在,它完全是在用户空间中创建。

用户级线程有很多优势,比如。

  1. 管理开销小:创建、销毁不需要系统调用。

  2. 切换成本低:用户空间程序可以自己维护,不需要走操作系统调度。

但是这种线程也有很多的缺点。

  1. 与内核协作成本高:比如这种线程完全是用户空间程序在管理,当它进行 I/O 的时候,无法利用到内核的优势,需要频繁进行用户态到内核态的切换。

  2. 线程间协作成本高:设想两个线程需要通信,通信需要 I/O,I/O 需要系统调用,因此用户态线程需要支付额外的系统调用成本。

  3. 无法利用多核优势:比如操作系统调度的仍然是这个线程所属的进程,所以无论每次一个进程有多少用户态的线程,都只能并发执行一个线程,因此一个进程的多个线程无法利用多核的优势。

  4. 操作系统无法针对线程调度进行优化:当一个进程的一个用户态线程阻塞(Block)了,操作系统无法及时发现和处理阻塞问题,它不会更换执行其他线程,从而造成资源浪费。

内核态线程

内核态线程也称作内核级线程(Kernel Level Thread)。这种线程执行在内核态,可以通过系统调用创造一个内核级线程。

内核级线程有很多优势。

  1. 可以利用多核 CPU 优势:内核拥有较高权限,因此可以在多个 CPU 核心上执行内核线程。

  2. 操作系统级优化:内核中的线程操作 I/O 不需要进行系统调用;一个内核线程阻塞了,可以立即让另一个执行。

当然内核线程也有一些缺点。

  1. 创建成本高:创建的时候需要系统调用,也就是切换到内核态。

  2. 扩展性差:由一个内核程序管理,不可能数量太多。

  3. 切换成本较高:切换的时候,也同样存在需要内核操作,需要切换内核态。

用户态线程和内核态线程之间的映射关系

线程简单理解,就是要执行一段程序。程序不会自发的执行,需要操作系统进行调度。我们思考这样一个问题,如果有一个用户态的进程,它下面有多个线程。如果这个进程想要执行下面的某一个线程,应该如何做呢?

这时,比较常见的一种方式,就是将需要执行的程序,让一个内核线程去执行。毕竟,内核线程是真正的线程。因为它会分配到 CPU 的执行资源。

如果一个进程所有的线程都要自己调度,相当于在进程的主线程中实现分时算法调度每一个线程,也就是所有线程都用操作系统分配给主线程的时间片段执行。这种做法,相当于操作系统调度进程的主线程;进程的主线程进行二级调度,调度自己内部的线程。

这样操作劣势非常明显,比如无法利用多核优势,每个线程调度分配到的时间较少,而且这种线程在阻塞场景下会直接交出整个进程的执行权限。

由此可见,用户态线程创建成本低,问题明显,不可以利用多核。内核态线程,创建成本高,可以利用多核,切换速度慢。因此通常我们会在内核中预先创建一些线程,并反复利用这些线程。这样,用户态线程和内核态线程之间就构成了下面 4 种可能的关系:

多对一(Many to One)
用户态进程中的多线程复用一个内核态线程。这样,极大地减少了创建内核态线程的成本,但是线程不可以并发。因此,这种模型现在基本上用的很少。我再多说一句,这里你可能会有疑问,比如:用户态线程怎么用内核态线程执行程序?

程序是存储在内存中的指令,用户态线程是可以准备好程序让内核态线程执行的。后面的几种方式也是利用这样的方法。
在这里插入图片描述
一对一(One to One)

该模型为每个用户态的线程分配一个单独的内核态线程,在这种情况下,每个用户态都需要通过系统调用创建一个绑定的内核线程,并附加在上面执行。 这种模型允许所有线程并发执行,能够充分利用多核优势,Windows NT 内核采取的就是这种模型。但是因为线程较多,对内核调度的压力会明显增加。
在这里插入图片描述
多对多(Many To Many)
这种模式下会为 n 个用户态线程分配 m 个内核态线程。m 通常可以小于 n。一种可行的策略是将 m 设置为核数。这种多对多的关系,减少了内核线程,同时也保证了多核心并发。Linux 目前采用的就是该模型。
在这里插入图片描述
两层设计(Two Level)
这种模型混合了多对多和一对一的特点。多数用户态线程和内核线程是 n 对 m 的关系,少量用户线程可以指定成 1 对 1 的关系。
在这里插入图片描述
上图所展现的是一个非常经典的设计。

我们这节课讲解的问题、考虑到的情况以及解决方法,将为你今后解决实际工作场景中的问题打下坚实的基础。比如处理并发问题、I/O 性能瓶颈、思考数据库连接池的配置等,要想完美地解决问题,就必须掌握这些模型,了解问题的本质上才能更好地思考问题衍生出来的问题。

用户态线程和内核态线程的区别?

用户态线程工作在用户空间,内核态线程工作在内核空间。用户态线程调度完全由进程负责,通常就是由进程的主线程负责。相当于进程主线程的延展,使用的是操作系统分配给进程主线程的时间片段。内核线程由内核维护,由操作系统调度。

用户态线程无法跨核心,一个进程的多个用户态线程不能并发,阻塞一个用户态线程会导致进程的主线程阻塞,直接交出执行权限。这些都是用户态线程的劣势。内核线程可以独立执行,操作系统会分配时间片段。因此内核态线程更完整,也称作轻量级进程。内核态线程创建成本高,切换成本高,创建太多还会给调度算法增加压力,因此不会太多。

实际操作中,往往结合两者优势,将用户态线程附着在内核态线程中执行。


http://chatgpt.dhexx.cn/article/NK64bfCU.shtml

相关文章

什么是用户态和内核态

什么是用户态和内核态 从图上我们可以看出来通过系统调用将Linux整个体系分为用户态和内核态(或者说内核空间和用户空间)。 那内核态到底是什么呢?其实从本质上说就是我们所说的内核,它是一种特殊的软件程序,特殊在哪儿…

用户态和内核态之间的切换

用户态和内核态之间的切换 切换方式 从用户态到内核态切换可以通过三种方式,或者说会导致从用户态切换到内核态的操作: 系统调用,这个上面已经讲解过了,在我公众号之前的文章也有讲解过。其实系统调用本身就是中断,…

OS用户态和内核态

1、linux进程有4GB地址空间,如图所示: 3G-4G大部分是共享的,是内核态的地址空间。这里存放整个内核的代码和所有的内核模块以及内核所维护的数据。 2、特权级的概念: 对于任何操作系统来说,创建一个进程是核心功能。…

用户态和内核态区别

操作系统用户态和内核态之间的切换过程 1. 用户态和内核态的概念区别 究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能…

操作系统用户态和内核态之间的切换过程

操作系统用户态和内核态之间的切换过程 1. 用户态和内核态的概念区别 究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和…

用户态和内核态的内存管理

内核态:cpu可以访问内存的所有数据,包括外围设备,例如硬盘,网卡,cpu也可以将自己从一个程序切换到另一个程序。 用户态:只能受限的访问内存,且不允许访问外围设备,占用cpu的能力被剥…

CPU的用户态和内核态

内核从本质上看是一种软件——控制计算机的硬件资源 用户态和内核态也可以说是对应系统执行权限的一个分级 个人理解慎浅,多是参考别人的文章,日后工作之于在研究 文章目录 指令集一、用户态二、内核态三、用户态和内核态切换状态四、态切换的消耗4.1、上…

用户态和内核态切换

1. 切换方式 从用户态到内核态切换可以通过三种方式,或者说会导致从用户态切换到内核态的操作: 系统调用,这个上面已经讲解过了,在我公众号之前的文章也有讲解过。其实系统调用本身就是中断,但是软件中断&#xff0c…

计算机内核态和用户态,用户态和内核态的区别是什么

用户态和内核态的区别是,内核态运行操作系统程序,操作硬件,用户态运行用户程序;当程序运行在3级特权级上时,可以称之为运行在用户态,当程序运行在0级特权级上时,称之为运行在内核态。 本文操作环…

从根上理解用户态与内核态

欢迎来到操作系统系列,采用图解 大白话的形式来讲解,让小白也能看懂,帮助大家快速科普入门。 本篇文章开始探秘用户态与内核态,虽然一般面试不会问这个,但搞清楚这块,对我们理解整个计算机系统是及其有意…

详解内核态与用户态

介绍下内核态与用户态 内核态和用户态是操作系统中的两种不同的运行状态,它们的区别如下: 权限不同:内核态是操作系统拥有最高权限的运行状态,可以访问系统的所有资源,而用户态只能访问受限的资源。 系统调用&#x…

用户态和内核态的简单理解

文章目录 linux基础系统调用和库函数的区别为什么要区分用户态和内核态?用户态和内核态的切换耗费时间的原因哪些情况会出出现用户态和内核态的切换用户态切换到内核态的三种方式 linux基础 linux的kernel内核外是系统调用,系统调用外是shell、库函数&a…

度量学习和pytorch-metric-learning的使用

度量学习是学习一种特征空间的映射,把特征映射到具有度量属性的空间中,所谓度量属性是指在某种度量距离(可以是欧氏距离、余弦相似性等)下类内距离更小,类间距离更大。有了这种属性之后,就可以仅根据特征间…

深度度量学习 (metric learning deep metric learning )度量函数总结

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/qq_16234613/article/details/81210320 曼哈顿距离(CityBlockSimilarity) 同欧式距离相似&#x…

Multi-Scale Metric Learning for Few-Shot Learning(用于小样本学习的多尺度度量学习)

Abstract 本文提出了一种新的小样本学习方法,名字叫多尺度度量学习(multi-scale metric learning, MSML),能提取多尺度特征,学习样本间的多尺度关系,进行少镜头学习分类。提出了一种基于特征金字塔结构的多尺度特征嵌入方法&…

Metric Learning——度量学习

2018年04月10日 15:30:29 敲代码的quant 阅读数:1567 标签: 度量学习metric learning机器学习聚类 更多 个人分类: 机器学习 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/FrankieHel…

百面深度学习:基于度量学习的元学习模型

文章目录 Q1 元学习中非参数方法相比于参数方法的优点?Q2 如何用度量学习和注意力机制来改造基于最邻近的元学习方法? 更多基础知识可以查看前文内容 《百面深度学习》之元学习 基于度量学习(Metric Learning)的元学习方法&#…

行人重识别-度量学习

行人重识别-度量学习 前言 和前面介绍到的表征学习一样,度量学习也是基于全局特征学习的一种方法,且被广泛用于图像检索领域。不同于表征学习通过分类或者验证的方式,度量学习目的在于通过网络学习两张图片的相似度。在行人重识别问题上&am…

度量学习方法 - KISSME

KISSME(keep it simple and straightforward metric), 属于有监督的线性度量学习方法,本质上还是学习马氏距离中的矩阵M. 推导 首先,认为对于样本对,它们之间的差异程度(dissimilar)可以通过似然…

论文 基于度量学习的小样本学习研究 阅读心得

论文主要工作: 本文提出带间隔的小样本学习, 提升了所学习嵌入表示的质量。 为引入间隔, 本文根据小样本场景特点提出了多路对比损失, 使得小样本学习模型可以学习到一个更加具有判别性的度量空间,同时泛化误差可以减小…