S(Stockwell)变换的Matlab代码

article/2025/9/12 5:02:11

S变换的Matlab代码

    • S变换简介
    • Stockwell版S变换程序
    • Dash版S变换程序
    • 博主自己编写的S变换
    • 主函数
    • 仿真结果

S变换简介

S变换,又称为Stockwell变换,由R. G. Stockwell于1996年提出。具体的定义如下:
在这里插入图片描述
S变换在傅里叶域的表示形式为:
在这里插入图片描述
离散的S变换为:
在这里插入图片描述
S变换克服了短时傅里叶变换固定窗函数宽度的缺陷,采用了一个随频率变化的高斯窗函数。它的窗函数宽度与频率的倒数成正比,高频时用窄窗,低频用宽窗。所以具有多分辨率分析的思想,也可以看作相位校正的小波变换。

Stockwell版S变换程序

function [st, t, f] = st(timeseries, minfreq, maxfreq, samplingrate, freqsamplingrate)
% Returns the Stockwell Transform of the timeseries.
% Code by Robert Glenn Stockwell.
% Reference is "Localization of the Complex Spectrum: The S Transform"
% from IEEE Transactions on Signal Processing, vol. 44., number 4, April 1996, pages 998-1001.
%
%-------Inputs Needed------------------------------------------------
%
%   *****All frequencies in (cycles/(time unit))!******
%	"timeseries" - vector of data to be transformed
%-------Optional Inputs ------------------------------------------------
%
%"minfreq" is the minimum frequency in the ST result(Default=0)
%"maxfreq" is the maximum frequency in the ST result (Default=Nyquist)
%"samplingrate" is the time interval between samples (Default=1)
%"freqsamplingrate" is the frequency-sampling interval you desire in the ST result (Default=1)
%Passing a negative number will give the default ex.  [s,t,f] = st(data,-1,-1,2,2)
%-------Outputs Returned------------------------------------------------
%
% st     -a complex matrix containing the Stockwell transform.
%			 The rows of STOutput are the frequencies and the
%         columns are the time values ie each column is
%         the "local spectrum" for that point in time
%  t      - a vector containing the sampled times
%  f      - a vector containing the sampled frequencies
%--------Additional details-----------------------
%   %  There are several parameters immediately below that
%  the user may change. They are:
%[verbose]    if true prints out informational messages throughout the function.
%[removeedge] if true, removes a least squares fit parabola
%                and puts a 5% hanning taper on the edges of the time series.
%                This is usually a good idea.
%[analytic_signal]  if the timeseries is real-valued
%                      this takes the analytic signal and STs it.
%                      This is almost always a good idea.
%[factor]     the width factor of the localizing gaussian
%                ie, a sinusoid of period 10 seconds has a
%                gaussian window of width factor*10 seconds.
%                I usually use factor=1, but sometimes factor = 3
%                to get better frequency resolution.
%   Copyright (c) by Bob Stockwell
%   $Revision: 1.2 $  $Date: 1997/07/08% This is the S transform wrapper that holds default values for the function.
TRUE = 1;
FALSE = 0;
%%% DEFAULT PARAMETERS  [change these for your particular application]
verbose = FALSE;
removeedge = FALSE;
analytic_signal = TRUE;
factor = 1;
%%% END of DEFAULT PARAMETERS%%%START OF INPUT VARIABLE CHECK
% First:  make sure it is a valid time_series
%         If not, return the help message
if verbosedisp(' ')
end % i like a line left blankif nargin == 0if verbosedisp('No parameters inputted.')endst_helpt = 0;st = -1;f = 0;return
end% Change to column vector
if size(timeseries, 2) > size(timeseries, 1)timeseries = timeseries';
end% Make sure it is a 1-dimensional array
if size(timeseries, 2) > 1error('Please enter a *vector* of data, not matrix')return
elseif (size(timeseries) == [1, 1]) == 1error('Please enter a *vector* of data, not a scalar')return
end% use defaults for input variablesif nargin == 1minfreq = 0;maxfreq = fix(length(timeseries)/2);samplingrate = 1;freqsamplingrate = 1;
elseif nargin == 2maxfreq = fix(length(timeseries)/2);samplingrate = 1;freqsamplingrate = 1;[minfreq, maxfreq, samplingrate, freqsamplingrate] = check_input(minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, timeseries);
elseif nargin == 3samplingrate = 1;freqsamplingrate = 1;[minfreq, maxfreq, samplingrate, freqsamplingrate] = check_input(minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, timeseries);
elseif nargin == 4freqsamplingrate = 1;[minfreq, maxfreq, samplingrate, freqsamplingrate] = check_input(minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, timeseries);
elseif nargin == 5[minfreq, maxfreq, samplingrate, freqsamplingrate] = check_input(minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, timeseries);
elseif verbosedisp('Error in input arguments: using defaults')endminfreq = 0;maxfreq = fix(length(timeseries)/2);samplingrate = 1;freqsamplingrate = 1;
end
if verbosedisp(sprintf('Minfreq = %d', minfreq))disp(sprintf('Maxfreq = %d', maxfreq))disp(sprintf('Sampling Rate (time   domain) = %d', samplingrate))disp(sprintf('Sampling Rate (freq.  domain) = %d', freqsamplingrate))disp(sprintf('The length of the timeseries is %d points', length(timeseries)))disp(' ')
end
%END OF INPUT VARIABLE CHECK% If you want to "hardwire" minfreq & maxfreq & samplingrate & freqsamplingrate do it here% calculate the sampled time and frequency values from the two sampling rates
t = (0:length(timeseries) - 1) * samplingrate;
spe_nelements = ceil((maxfreq - minfreq + 1)/freqsamplingrate);
f = (minfreq + [0:spe_nelements - 1] * freqsamplingrate) / (samplingrate * length(timeseries));
if verbosedisp(sprintf('The number of frequency voices is %d', spe_nelements))
end% The actual S Transform function is here:
st = strans(timeseries, minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, removeedge, analytic_signal, factor);
% this function is below, thus nicely encapsulated%WRITE switch statement on nargout
% if 0 then plot amplitude spectrum
if nargout == 0if verbosedisp('Plotting pseudocolor image')endpcolor(t, f, abs(st))
endreturn%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^function st = strans(timeseries, minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, removeedge, analytic_signal, factor);
% Returns the Stockwell Transform, STOutput, of the time-series
% Code by R.G. Stockwell.
% Reference is "Localization of the Complex Spectrum: The S Transform"
% from IEEE Transactions on Signal Processing, vol. 44., number 4,
% April 1996, pages 998-1001.
%
%-------Inputs Returned------------------------------------------------
%         - are all taken care of in the wrapper function above
%
%-------Outputs Returned------------------------------------------------
%
%	ST    -a complex matrix containing the Stockwell transform.
%			 The rows of STOutput are the frequencies and the
%			 columns are the time values
%
%
%----------------------------------------------------------------------% Compute the length of the data.
n = length(timeseries);
original = timeseries;
if removeedgeif verbosedisp('Removing trend with polynomial fit')endind = [0:n - 1]';r = polyfit(ind, timeseries, 2);fit = polyval(r, ind);timeseries = timeseries - fit;if verbosedisp('Removing edges with 5% hanning taper')endsh_len = floor(length(timeseries)/10);wn = hanning(sh_len);if (sh_len == 0)sh_len = length(timeseries);wn = 1 & [1:sh_len];end% make sure wn is a column vector, because timeseries isif size(wn, 2) > size(wn, 1)wn = wn';endtimeseries(1:floor(sh_len/2), 1) = timeseries(1:floor(sh_len/2), 1) .* wn(1:floor(sh_len/2), 1);timeseries(length(timeseries)-floor(sh_len/2):n, 1) = timeseries(length(timeseries)-floor(sh_len/2):n, 1) .* wn(sh_len-floor(sh_len/2):sh_len, 1);end% If vector is real, do the analytic signalif analytic_signalif verbosedisp('Calculating analytic signal (using Hilbert transform)')end% this version of the hilbert transform is different than hilbert.m%  This is correct!ts_spe = fft(real(timeseries));h = [1; 2 * ones(fix((n - 1)/2), 1); ones(1-rem(n, 2), 1); zeros(fix((n - 1)/2), 1)];ts_spe(:) = ts_spe .* h(:);timeseries = ifft(ts_spe);
end% Compute FFT's
tic;
vector_fft = fft(timeseries);
tim_est = toc;
vector_fft = [vector_fft, vector_fft];
tim_est = tim_est * ceil((maxfreq - minfreq + 1)/freqsamplingrate);
if verbosedisp(sprintf('Estimated time is %f', tim_est))
end% Preallocate the STOutput matrix
st = zeros(ceil((maxfreq - minfreq + 1)/freqsamplingrate), n);
% Compute the mean
% Compute S-transform value for 1 ... ceil(n/2+1)-1 frequency points
if verbosedisp('Calculating S transform...')
endif minfreq == 0st(1, :) = mean(timeseries) * (1 & [1:1:n]);
elsest(1, :) = ifft(vector_fft(minfreq+1:minfreq+n).*g_window(n, minfreq, factor));
end%the actual calculation of the ST
% Start loop to increment the frequency point
for banana = freqsamplingrate:freqsamplingrate:(maxfreq - minfreq)st(banana/freqsamplingrate+1, :) = ifft(vector_fft(minfreq+banana+1:minfreq+banana+n).*g_window(n, minfreq+banana, factor));
end % a fruit loop!   aaaaa ha ha ha ha ha ha ha ha ha ha
% End loop to increment the frequency point
if verbosedisp('Finished Calculation')
end%%% end strans function%------------------------------------------------------------------------
function gauss = g_window(length, freq, factor)% Function to compute the Gaussion window for
% function Stransform. g_window is used by function
% Stransform. Programmed by Eric Tittley
%
%-----Inputs Needed--------------------------
%
%	length-the length of the Gaussian window
%
%	freq-the frequency at which to evaluate
%		  the window.
%	factor- the window-width factor
%
%-----Outputs Returned--------------------------
%
%	gauss-The Gaussian window
%% vector(1, :) = [0:length - 1];
% vector(2, :) = [-length:-1];
% vector = vector.^2;
% vector = vector * (-factor * 2 * pi^2 / freq^2);
% % Compute the Gaussion window
% gauss = sum(exp(vector));
%%
lamda=15;%5  15
p=1;%0.5
vector(1,:)=[0:length-1];
vector(2,:)=[-length:-1];
vector=vector.^2;
vector=vector*(-factor*lamda^2*pi^2/(freq.^(2*p)));
gauss=sum(lamda*freq.^p*exp(vector));%-----------------------------------------------------------------------%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^%
function [minfreq, maxfreq, samplingrate, freqsamplingrate] = check_input(minfreq, maxfreq, samplingrate, freqsamplingrate, verbose, timeseries)
% this checks numbers, and replaces them with defaults if invalid% if the parameters are passed as an array, put them into the appropriate variables
s = size(minfreq);
l = max(s);
if l > 1if verbosedisp('Array of inputs accepted.')endtemp = minfreq;minfreq = temp(1);if l > 1maxfreq = temp(2); end;if l > 2samplingrate = temp(3); end;if l > 3freqsamplingrate = temp(4); end;if l > 4if verbosedisp('Ignoring extra input parameters.')endend;endif minfreq < 0 || minfreq > fix(length(timeseries)/2);minfreq = 0;if verbosedisp('Minfreq < 0 or > Nyquist. Setting minfreq = 0.')end
end
if maxfreq > length(timeseries) / 2 || maxfreq < 0maxfreq = fix(length(timeseries)/2);if verbosedisp(sprintf('Maxfreq < 0 or > Nyquist. Setting maxfreq = %d', maxfreq))end
end
if minfreq > maxfreqtemporary = minfreq;minfreq = maxfreq;maxfreq = temporary;clear temporary;if verbosedisp('Swapping maxfreq <=> minfreq.')end
end
if samplingrate < 0samplingrate = abs(samplingrate);if verbosedisp('Samplingrate <0. Setting samplingrate to its absolute value.')end
end
if freqsamplingrate < 0 % check 'what if freqsamplingrate > maxfreq - minfreq' casefreqsamplingrate = abs(freqsamplingrate);if verbosedisp('Frequency Samplingrate negative, taking absolute value')end
end% bloody odd how you don't end a function \%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^% \
function st_help
disp(' ')
disp('st()  HELP COMMAND')
disp('st() returns  - 1 or an error message if it fails')
disp('USAGE::    [localspectra,timevector,freqvector] = st(timeseries)')
disp('NOTE::   The function st() sets default parameters then calls the function strans()')
disp(' ')
disp('You can call strans() directly and pass the following parameters')
disp(' **** Warning!  These inputs are not checked if strans() is called directly!! ****')
disp('USAGE::  localspectra = strans(timeseries,minfreq,maxfreq,samplingrate,freqsamplingrate,verbose,removeedge,analytic_signal,factor) ')disp(' ')
disp('Default parameters (available in st.m)')
disp('VERBOSE          - prints out informational messages throughout the function.')
disp('REMOVEEDGE       - removes the edge with a 5% taper, and takes')
disp('FACTOR           -  the width factor of the localizing gaussian')
disp('                    ie, a sinusoid of period 10 seconds has a ')
disp('                    gaussian window of width factor*10 seconds.')
disp('                    I usually use factor=1, but sometimes factor = 3')
disp('                    to get better frequency resolution.')
disp(' ')
disp('Default input variables')
disp('MINFREQ           - the lowest frequency in the ST result(Default=0)')
disp('MAXFREQ           - the highest frequency in the ST result (Default=nyquist')
disp('SAMPLINGRATE      - the time interval between successive data points (Default = 1)')
disp('FREQSAMPLINGRATE  - the number of frequencies between samples in the ST results')% end of st_help procedure

Dash版S变换程序

function ST=stran(h)% Compute S-Transform without for loops%%% Coded by Kalyan S. Dash %%%
%%% IIT Bhubaneswar, India %%%[~,N]=size(h); % h is a 1xN one-dimensional seriesnhaf=fix(N/2);odvn=1;if nhaf*2==Nodvn=0;
endf=[0:nhaf -nhaf+1-odvn:-1]/N;Hft=fft(h);%Compute all frequency domain Gaussians as one matrixinvfk=[1./f(2:nhaf+1)]';W=2*pi*repmat(f,nhaf,1).*repmat(invfk,1,N);G=exp((-W.^2)/2); %Gaussian in freq domain% End of frequency domain Gaussian computation% Compute Toeplitz matrix with the shifted fft(h)HW=toeplitz(Hft(1:nhaf+1)',Hft);% Exclude the first row, corresponding to zero frequencyHW=[HW(2:nhaf+1,:)];% Compute Stockwell TransformST=ifft(HW.*G,[],2); %Compute voice%Add the zero freq rowst0=mean(h)*ones(1,N);ST=[st0;ST];end

博主自己编写的S变换

function wcoefs = myst(t,Sig,freqlow,freqhigh,alpha)
%==================%
% Stockwell transform ver 1.0 (2021-09-24)
% Copyright (c) by Jinshun Shen,Xidian University
%jsshen@stu.xidian.edu.cn
%This program can not be used for commercialization without the authorization of its author
%======输入======%
%t:时间序列
% Sig: 输入信号
%freqlow,freqhigh:频率范围
%alpha:频率分辨率
%======输出======%
% wcoefs: ST变换计算结果if (nargin <= 2)error('At least 2 parameters required');endif (nargin < 5)alpha=0.05;
elseif (nargin < 4)freqhigh=log(length(t));
elseif (nargin < 3)freqlow=0;
endif size(t,1)>1%t是列向量,则转置t=t';
end
if size(Sig,1)>1%Sig是列向量,则转置Sig=Sig.';
end
% 信号的长度
SigLen = length(Sig);
% 时间的长度
TimeLen = length(t);
dt=t(2)-t(1);
fre=freqlow:alpha:freqhigh;%产生频率范围
% time=1:TimeLen;
if SigLen > TimeLen%信号长度大于时间长度,时间补0t=[t  zeros(1,SigLen-TimeLen)];
end
if SigLen < TimeLen%信号长度小于于时间长度,信号补0Sig=[Sig  zeros(1,TimeLen-SigLen)];
end
% 总频率数量
nLevel=length(fre);
% 分配计算结果的存储单元
wcoefs = zeros(nLevel,TimeLen); 
temp=zeros(1,TimeLen);
for m = 1:nLevel
% 计算各频率上的ST系数
% 提取频率参数
f= fre(m);for n=1:TimeLen%计算高斯窗函数Gauss_st=(f/(sqrt(2*pi)))*exp(-0.5*(n*dt-t).^2*(f)^2).*exp(-1i*2*pi*f*t);temp(n)=trapz(t,Sig.*Gauss_st);%效率低,精度稍高end
wcoefs(m,:)=temp;
end
end

主函数

clear;
close all;
clc
%%
fs=2^9;    %采样频率
dt=1/fs;    %时间间隔
timestart=0;
timeend=4;
t=(0:(timeend-timestart)/dt-1)*dt+timestart;
k2=27;
k1=30;
f0=80;
f1=80;
y1=exp((1i)*pi*k2*t.*t+2*pi*1i*f0*t).*(t>=timestart& t<timeend);
y2=exp((1i)*pi*k1*t.*t+2*pi*1i*f1*t).*(t>=timestart& t<timeend);
y=y1+y2;frelow=0;
frehigh=256;
alpha=1;
fre=frelow:alpha:frehigh;
%%
[st_matrix_z,st_times,st_frequencies] = st(y);
myst = myst(t,y,frelow,frehigh,alpha);
fmin=0;
fmax=256;
df=1;
totalscal=(fmax-fmin)/df;
f=fmin:df:fmax-df;%预期的频率figure()
imagesc(t,f,abs(st_matrix_z));
axis([timestart timeend fmin fmax])
colormap(jet);
set(gca,'ydir','normal')
xlabel('Time(s)')
ylabel('Frequency(Hz)')
title('Stockwell Transform')figure()
imagesc(t,fre,abs(myst));
axis([timestart timeend frelow frehigh])
colormap(jet);
set(gca,'ydir','normal')
xlabel('Time(s)')
ylabel('Frequency(Hz)')
title('My Stockwell Transform')

仿真结果

第一幅图是Stockwell版S变换结果,第二幅图是博主自己写的S变换程序的结果。Stockwell版S变换结果明显优于博主的S变换结果,原因在于Stockwell版S变换程序没有使用1996年论文中的形式,它可以看出一种广义的S变换,或者称自适应的S变换。Stockwell版S变换在实际操作中不太好用,如果参数设置不合适,则无法呈现正确的结果。而博主自己写的S变换程序是严格遵循1996年论文中的形式,它可以自由的设置最低频率,最高频率,频率间隔,比较好操作,但是运行比较慢。后续,我会上传一种广义的S变换程序,它的结果如第三幅图所示。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

R. G. Stockwell, L. Mansinha, and R. Lowe, “Localization of the
complex spectrum: the S transform,” IEEE transactions on signal
processing, vol. 44, no. 4, pp. 998–1001, 1996.


http://chatgpt.dhexx.cn/article/MfMuhUBl.shtml

相关文章

如何进行支付功能的测试

非现金支付时代&#xff0c;非现金支付已经成为了生活不可或缺的一部分&#xff0c;我们只需要一台手机便可走遍全国各地&#xff08;前提是支付宝&#xff0c;微信有钱<00>&#xff09;,那么作为测试人员&#xff0c;支付测试也是非常重要的一环&#xff0c;那么下面我就…

Wireshark对京东网站进行抓包

Wireshark对京东网站进行抓包 一、首先获取京东IP地址 二、写捕获器筛选条件抓包 1、设置捕获过滤器的host为自己主机IP和目的地址IP 开始抓包 在浏览器中打开京东&#xff0c;点击京东上物品信息&#xff0c;Wireshark就会抓取 抓包结束&#xff0c;保存pcap文件。 解析出cs…

支付宝、京东支付场景之策略模式实战

我是「猿码天地」&#xff0c;一个热爱技术、热爱编程的IT猿。技术是开源的&#xff0c;知识是共享的&#xff01; 写作是对自己学习的总结和记录&#xff0c;如果您对 Java、分布式、微服务、中间件、Spring Boot、Spring Cloud等技术感兴趣&#xff0c;可以关注我的动态&…

支付安全不能说的那些事

原文链接&#xff1a;https://www.inforsec.org/wp/?p1759 在线支付已经走进每个人的生活。抢红包、网上购物、生活缴费等服务中处处都有在线支付的身影。但是在线支付体系暴露过许多次安全问题&#xff0c;黑客利用在线支付的漏洞可以悄无声息的免费清空购物车等&#xff0c…

京东商品接口加解密算法解析

最近,闲来没事,打开看了一下京东图书的热销榜,想通过接口查看下它接口的加密方式,于是直接打开了M站的地址:https://m.jd.com/,然后打开搜索页面,如下图。 打开页面,打开开发者工具,往下滑动鼠标,获取接口地址。 解析一下接口,接口返回值跟没什么特殊说明,首尾加…

支付宝、财付通、网银、百度钱包、京东钱包接口费率

在集成支付功能时&#xff0c;遇到了付款方式接口选择的问题&#xff0c;于是对支付宝&#xff0c;财付通&#xff0c;PayPal&#xff0c;网银在线&#xff0c;快钱有了具体的认识&#xff0c;并分享出来。 支付渠道费用&#xff08;2016&#xff09; 渠道名称接入费交易手续费…

手把手教学京东api接口全部操作过程

jd.readme接入文档item_get获得JD商品详情item_search按关键字搜索商品item_search_img按图搜索京东商品&#xff08;拍立淘&#xff09;item_search_shop获得店铺的所有商品item_history_price获取商品历史价格信息item_recommend获取推荐商品列表upload_img上传图片到JDitem_…

京东APP下单接口调用

首先声明本人对于以下研究仅出于学习目的&#xff0c;不存在任何商业化行为。 通过京东app的api调用下单接口直接下单需要做一下两步&#xff1a; 签名&#xff1a;京东app的每一个接口都会带上sign参数&#xff0c;值是由body&#xff0c;st&#xff0c;sv&#xff0c;clien…

6.0 增加京东支付

给系统&#xff08;只适合版本6.0&#xff09;增加京东支付&#xff0c;系统原本是没有京东支付&#xff0c; 1、先在met_pay_config表中&#xff0c;增加京东支付参数&#xff0c;7京东支付 2、在系统中&#xff0c;浏览器在手机状态下增加京东支付 路径&#xff1a;\app\sy…

uniapp 让支付触手可及,封装了微信支付、QQ支付、支付宝支付、京东支付、银联支付常用的支付方式以及各种常用的接口

下载地址 https://gitee.com/zscat/mallplus 1.uniapp 接入各种h5支付 // 用户点击支付方式处理async toPayHandler(code) {let params = {orderId:this.orderId};let data = {payment_code: code,payment_type: this.type}data[orderId] = (this.type == 1 || this.type == …

RN对接京东支付sdk(IOS)

京东支付IOS接入说明文档 1、根据 京东支付IOS接入说明文档 集成sdk依赖的framework&#xff0c;配置相关的内容&#xff08;xcode 需要配置签名&#xff09; 2、在ios 下封装调用sdk的方法 JDPayManager.h // // JDPayManager.h // b2bapp // // Created by edz on 2021/…

Ecshop小京东支付插件【小京东个人支付宝即时到帐支付插件支持PC电脑版+手机版】

商之翼建立了一整套以标准化电商软件为基础的"一站式"全网营销电商解决方案。包括基于不同运维模式的B2B2B2C、B2B2C、B2C等被企业用户广泛使用的电商解决方案&#xff0c;还包括基于生鲜、农村、汽车、商超百货、建材、母婴、酒行业、跨境、社区等具体解决方案&…

京东支付逻辑存在不安全因素

写在前面的话: 写本文只想引起足够重视,不管是开发还是用户; 关于本文提到问题也提交给京东官方,希望他们能重视. 同时也希望看到本文的用户多一个心眼 希望大家都不要达到以下的全部假设; --------------------------- 以下测试完成于2015-09-08日; 测试条件与步骤: 一手机…

京东支付SDK重构设计与实现

背景 众所周知&#xff0c;软件开发效率、维护成本与自身复杂度成正比&#xff0c;而客户端软件复杂度则主要体现在业务规模上。 京东支付Android SDK从2015年启动以来&#xff0c;已历经五个春秋&#xff0c;如今发展到纯支付业务代码7.5W行的规模&#xff08;不含支付团队内…

php支付接口要改动的参数,京东支付接口2.0PHP集成遇到的一些问题:所有参数必须是string!...

最近发现京东的支付接口升级了&#xff0c;原来的接口以及不一样了&#xff0c;就花了点时间做了升级&#xff0c;但是遇到了一些很基础很二的问题&#xff0c;之前的时候接口跳转通知是get方式的&#xff0c;用在原来的支付驱动上面很正常&#xff0c;但是2.0的接口就没法正常…

京东支付接口

官方文档&#xff1a;http://payapi.jd.com/docList.html?methodName0# 一、本地测试(用官方自带参数测试) 1、下载官方接口文件: 京东支付PC&H5接口文档>>京东支付2.0-PHP 2、测试&#xff0c;把“京东支付2.0-PHP”解压出来的文件放到PHP环境中&#xff0c;什…

RN对接京东支付sdk(Android)

京东支付Android接入说明文档 1、根据 京东支付Android接入说明文档 集成sdk依赖的jar包&#xff0c;配置相关的内容&#xff08;主要根据文档一步一步配置就行&#xff0c;这里就不细说了&#xff0c;本章主要是关于使用RN调用sdk&#xff09; 2、在../android/app/src/java …

京东支付功能流程

1&#xff1a;目前市场上支付API的第三方很多&#xff0c;主流的接口有 支付宝&#xff0c;微信&#xff0c;京东&#xff0c;云闪付&#xff0c;银联 等等 主要包含 付款码支付 &#xff0c; JSAPI支付&#xff0c; APP支付&#xff0c;H5支付 &#xff0c; 小程序支付&…

微信公众账号自动回复小程序链接

<a data-miniprogram-appid"appid" data-miniprogram-path"路径" href"可以不写">小程序</a>效果图 文章引用于&#xff1a; http://dy.163.com/v2/article/detail/DR1H8P840511AOT5.html

微信开发者工具预览/真机调试报错SyntaxError: Invalid or unexpected token [1.06.2210310][win32-x64]

项目在微信开发者工具上能正常运行&#xff0c;但是当点击【预览】或者【真机调试】就会报错&#xff1a; SyntaxError: Invalid or unexpected token [1.06.2210310][win32-x64] 如果是本地调试的话&#xff0c;将以下这些勾选上。