【OpenCV实战】简洁易懂的车牌号识别Python+OpenCV实现“超详解”(含代码)

article/2025/9/21 12:30:16

前面4篇博客介绍了OpenCV图像处理的基础知识,本篇博客利用前4篇的知识完成一个小项目——车牌号码识别。该篇博客的代码可以满足小区门禁车牌号的识别。本篇博客是前4篇博客知识的一个综合运用。感觉学会了这个可以实现一系列的图像识别任务。。。毕竟好多技巧都是共通的
首先要感谢 大佬的博客 ,在它的基础上完成了自己的识别任务。

简洁易懂的车牌号识别Python实现“超详解”(含代码)

  • 1、整体思路
  • 2、代码详解
    • 2.1提取车牌位置
    • 2.2车牌字符的分割
    • 2.3模板匹配识别字符
  • 3、总结
  • 4、参考

1、整体思路

首先附上本次识别的图片:(图片是我在百度上找的)
在这里插入图片描述
基于OpenCV车牌号识别总体分为四个步骤
1)提取车牌位置,将车牌从图中分割出来;
2)车牌字符的分割;
3)通过模版匹配识别字符;
4)将结果绘制在图片上显示出来。
与深度学习相比,传统图像处理的识别有好处又有坏处
好处:不需要大量的数据集训练模型,通过形态学、边缘检测等操作提取特征
坏处:基于传统图像处理的图像识别代码的泛化性较低,当图像的角度,光照不同时,识别效果有时会不尽人意。

2、代码详解

为了方便观察每一步图片的变化,本次代码在Jupyter Notebook上编写,全部代码以上传(可直接运行)。
本次项目中会多次使用到图片显示和图片去噪灰度处理,所以首先定义了显示函数高斯滤波灰度处理函数,方便后面的调用:

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
# plt显示彩色图片
def plt_show0(img):
#cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]b,g,r = cv2.split(img)img = cv2.merge([r, g, b])plt.imshow(img)plt.show()# plt显示灰度图片
def plt_show(img):plt.imshow(img,cmap='gray')plt.show()# 图像去噪灰度处理
def gray_guss(image):image = cv2.GaussianBlur(image, (3, 3), 0)gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)return gray_image

2.1提取车牌位置

对图片进行阈值化处理、边缘检测及形态学操作,根据得到的轮廓特征识别车牌的具体位置,将车牌分割出来。直接上代码及代码详解:

# 读取待检测图片
origin_image = cv2.imread('./image/car.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
# 图像去噪灰度处理
gray_image = gray_guss(image)
# x方向上的边缘检测(增强边缘信息)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)

二值化图以及闭操作(闭合细小的连接,抑制暗细节)的结果如图所示:

在这里插入图片描述

# 腐蚀(erode)和膨胀(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作(抑制暗细节)
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)
# 获得轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for item in contours:rect = cv2.boundingRect(item)x = rect[0]y = rect[1]weight = rect[2]height = rect[3]# 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像if (weight > (height * 3.5)) and (weight < (height * 4)):image = origin_image[y:y + height, x:x + weight]plt_show0(image)

在这里插入图片描述在这里插入图片描述

2.2车牌字符的分割

#车牌字符分割
# 图像去噪灰度处理
gray_image = gray_guss(image)
# 图像阈值化操作——获得二值化图   
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)#膨胀操作,使“苏”字膨胀为一个近似的整体,为分割做准备
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
image = cv2.dilate(image, kernel)
plt_show(image)

在这里插入图片描述

# 查找轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
words = []
word_images = []
#对所有轮廓逐一操作
for item in contours:word = []rect = cv2.boundingRect(item)x = rect[0]y = rect[1]weight = rect[2]height = rect[3]word.append(x)word.append(y)word.append(weight)word.append(height)words.append(word)
# 排序,车牌号有顺序。words是一个嵌套列表
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:# 筛选字符的轮廓if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 3.5)) and (word[2] > 25):i = i+1splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]word_images.append(splite_image)print(i)
print(words)for i,j in enumerate(word_images):  plt.subplot(1,7,i+1)plt.imshow(word_images[i],cmap='gray')
plt.show()

在这里插入图片描述

2.3模板匹配识别字符

模板匹配是一个机械性的流程,所以把机械性的操作设定为函数。

#模版匹配
# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z','藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁','青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):referImg_list = []for filename in os.listdir(directory_name):referImg_list.append(directory_name + "/" + filename)return referImg_list# 获得中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():chinese_words_list = []for i in range(34,64):#将模板存放在字典中c_word = read_directory('./refer1/'+ template[i])chinese_words_list.append(c_word)return chinese_words_list
chinese_words_list = get_chinese_words_list()# 获得英文模板列表(只匹配车牌的第二个字符)
def get_eng_words_list():eng_words_list = []for i in range(10,34):e_word = read_directory('./refer1/'+ template[i])eng_words_list.append(e_word)return eng_words_list
eng_words_list = get_eng_words_list()# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():eng_num_words_list = []for i in range(0,34):word = read_directory('./refer1/'+ template[i])eng_num_words_list.append(word)return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()# 读取一个模板地址与图片进行匹配,返回得分
def template_score(template,image):#将模板进行格式转换template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)#模板图像阈值化处理——获得黑白图ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
#     height, width = template_img.shape
#     image_ = image.copy()
#     image_ = cv2.resize(image_, (width, height))image_ = image.copy()#获得待检测图片的尺寸height, width = image_.shape# 将模板resize至与图像一样大小template_img = cv2.resize(template_img, (width, height))# 模板匹配,返回匹配得分result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)return result[0][0]# 对分割得到的字符逐一匹配
def template_matching(word_images):results = []for index,word_image in enumerate(word_images):if index==0:best_score = []for chinese_words in chinese_words_list:score = []for chinese_word in chinese_words:result = template_score(chinese_word,word_image)score.append(result)best_score.append(max(score))i = best_score.index(max(best_score))# print(template[34+i])r = template[34+i]results.append(r)continueif index==1:best_score = []for eng_word_list in eng_words_list:score = []for eng_word in eng_word_list:result = template_score(eng_word,word_image)score.append(result)best_score.append(max(score))i = best_score.index(max(best_score))# print(template[10+i])r = template[10+i]results.append(r)continueelse:best_score = []for eng_num_word_list in eng_num_words_list:score = []for eng_num_word in eng_num_word_list:result = template_score(eng_num_word,word_image)score.append(result)best_score.append(max(score))i = best_score.index(max(best_score))# print(template[i])r = template[i]results.append(r)continuereturn resultsword_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
print( "".join(result))
Output:
['苏', 'E', '0', '5', 'E', 'V', '8']
苏E05EV8

最后,利用PIL库将结果绘制在原图上,获得的最终输出图片如下:

from PIL import ImageFont, ImageDraw, Imageheight,weight = origin_image.shape[0:2]
print(height)
print(weight)image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)#设置需要显示的字体
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)

在这里插入图片描述
大功告成!!!!!

3、总结

(一) 、OpenCV的车牌号码识别一共分为四步走:
1–提取车牌位置,将车牌从图中分割出来;
2–车牌字符的分割;
3–通过模版匹配识别字符;
4–将结果绘制在图片上显示出来。
(二)、图像处理的识别泛化性较低,对图片的角度光照有要求,所以要理解图像处理每一步的作用,根据自己图像的特点调整参数,更改操作顺序等等,以达到最好的效果。
(三)、车牌号识别的模板连接如下,需要的可以下载,有了模板就可以识别自己的图片了
链接:https://pan.baidu.com/s/1QBjy7c0klv_PBUwJjA8ynA
提取码:v53d
(四)、完整代码已上传SCDN点击查看

4、参考

http://zengqiang.club/blog/34


http://chatgpt.dhexx.cn/article/LI83IbcF.shtml

相关文章

网络安全检测技术

一&#xff0c;网络安全漏洞 安全威胁是指所有能够对计算机网络信息系统的网络服务和网络信息的机密性&#xff0c;可用性和完整性产生阻碍&#xff0c;破坏或中断的各种因素。安全威胁可分为人为安全威胁和非人为安全威胁两大类。 1&#xff0c;网络安全漏洞威胁 漏洞分析的…

深度学习网络安全

Introduction 我们在社区中看到的大多数深度学习应用程序通常面向营销&#xff0c;销售&#xff0c;财务等领域。我们几乎从未阅读过文章或找到有关深度学习的资源用于保护这些产品和业务&#xff0c; 恶意软件和黑客攻击。 虽然像谷歌&#xff0c;Facebook&#xff0c;微软和…

网络安全法学习整理笔记

网络安全法 一、背景 概念 网络&#xff1a;是指由计算机或者其他信息终端及相关设备组成的按照一定的规则和程序对信息进行收集、存储、传输、交换、处理的系统。网络安全&#xff1a;是指通过采取必要措施&#xff0c;防范对网络的攻击、侵入、干扰、破坏和非法使用以及意…

网络安全免费学习网址(英文)

转载 作者&#xff1a;W-Pwn 链接&#xff1a;https://www.zhihu.com/question/49222590/answer/339206050 来源&#xff1a;知乎 著作权归作者所有。商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处。 知识就是力量 但是知识太贵了&#xff0c;现在随便拎…

【论文阅读】基于强化学习的网络安全防护策略

【论文阅读】基于强化学习的网络安全防护策略 本篇文章将介绍一篇针对网络安全问题&#xff0c;运用强化学习方法寻找最优的网络防御策略。 Finding Effective Security Strategies through Reinforcement Learning and Self-Play 前言 通过强化学习和 自对弈(self-play) 寻…

还在为不知道怎么学习网络安全而烦恼吗?这篇文带你从入门级开始学习网络安全—认识网络安全

随着网络安全被列为国家安全战略的一部分&#xff0c;这个曾经细分的领域发展提速了不少&#xff0c;除了一些传统安全厂商以外&#xff0c;一些互联网大厂也都纷纷加码了在这一块的投入&#xff0c;随之而来的吸引了越来越多的新鲜血液不断涌入。 不同于Java、C/C等后端开发岗…

[网络安全自学篇] 一.入门笔记之看雪Web安全学习及异或解密示例

最近开始学习网络安全相关知识&#xff0c;接触了好多新术语&#xff0c;感觉自己要学习的东西太多&#xff0c;真是学无止境&#xff0c;也发现了好几个默默无闻写着博客、做着开源的大神。准备好好学习下新知识&#xff0c;并分享些博客与博友们一起进步&#xff0c;加油。非…

码农翻身,卧虎藏龙

写公众号是很不容易的&#xff0c;在现在信息爆炸的情况下&#xff0c;好文章也很容易被标题党埋没&#xff0c;在我的知识星球“码农翻身”中&#xff0c;我发起了一个活动&#xff1a;免费给写公众号的球友们做个推广。 这个不是互推&#xff0c;就是我单方面的推广&#xf…

现在转行码农的成本已经非常高了,别盲目转行..

转行码农一直是个比较火热的话题&#xff0c;也有很多读者咨询过这个问题&#xff0c;转成功的也不少&#xff0c;比如下面这位香港的同学&#xff1a; 这位朋友半年前就跟我聊过&#xff0c;他不太想干没有技术含量的体力活&#xff0c;一直在坚持自学&#xff0c;这也算如愿…

农村出身的 90 后程序员,如何逆袭为中产阶级?| 程序员有话说

作者 | 阿文 责编 | 伍杏玲 出品 | 程序人生&#xff08;ID&#xff1a;coder_life&#xff09; 小蔡&#xff0c; 90 年 10 月出生&#xff0c;Java开发工程师&#xff0c;目前就职于杭州滨江某知名互联网公司从事云计算开发工作&#xff0c;2013 年毕业就从山东来到了杭州。 …

【一哥闲聊】程序员如何打破35岁魔咒

公众号推文规则变了&#xff0c;点击上方 "数据社"关注, 设为星标 后台回复【加群】&#xff0c;申请加入数据学习交流群 大家好&#xff0c;我是一哥。今天跟大家聊聊程序员35岁以后的方向怎么选&#xff1f; 作为程序员&#xff0c;行业内一直流传着35岁的魔咒&…

码农翻身(随笔)

书一直都有在读&#xff0c;我会一直更新博文&#xff0c;欢迎大家前来阅读、指教&#xff01; XML和注解 xml&#xff1a;应用于集中配置的场合&#xff0c;比如数据源的配置&#xff1b; 注解&#xff1a;像Controller、RequestMapping、Transactional这样的注解&#xff…

读《码农翻身》有感

前几日偶得一本《码农翻身》&#xff0c;闲来品读&#xff0c;收获颇丰。 作者刘欣老师可能是码农中故事讲得最好的人&#xff0c;能把线程&#xff0c;进程&#xff0c;死锁这种概念讲成计算机内部王国漫游记&#xff0c;能把分布式事务这种高级概念讲成java王国中的权贵大臣勾…

告别码农,成为真正的程序员

本文是我借助 Google 从网上拼凑的文章&#xff0c;可能条理不是很清晰&#xff0c;希望对广大程序员们有些帮助。 一、成长的寓言&#xff1a;做一棵永远成长的苹果树 一棵苹果树&#xff0c;终于结果了。 第一年&#xff0c;它结了10个苹果&#xff0c;9个被拿走&#xff0c;…

达到年薪百万,就算码农翻身了吗?

上周末有个小伙伴问我&#xff1a;码农怎么样才能真正地翻身&#xff1f; 我自己都没有翻身&#xff0c;更没有达到财务自由&#xff0c; 回答这样的问题显然是力不从心的。 &#xff08;郑渊洁对财务自由的定义&#xff1a;从现在开始不工作&#xff0c;能保持现在的生活水平不…

《码农翻身》之技术之路

《码农翻身》读书笔记之技术之路 这是我的后端读书笔记系列文章的第四三篇&#xff0c;选取的是最近刚刚圈粉的知名博主刘欣创作的《码农翻身》。这篇文章只是最后一部分内容。 本文内容主要根据知名博主刘欣一作《码农翻身》的内容总结而来&#xff0c;本书的内容风趣幽默&a…

给大忙人看的码农翻身记

码农翻身记个人读后感 文章目录 码农翻身记个人读后感本书介绍大纲启发分享个人的能力欠缺的地方书中比较棒的建议 本书介绍 《码农翻身》用故事的方式讲解了软件编程的若干重要领域&#xff0c;侧重于基础性、原理性的知识。 非常适合刚入门大学生或者 计算机领域入行 一两年左…

码农翻身之编程语言的巅峰

“哇塞&#xff0c;怎么可能这么简单&#xff01;” 当C语言老头儿还是小伙子的时候&#xff0c;第一次见到了汇编&#xff0c;发出了这么一声感慨。 在C语言看来&#xff0c;这汇编的指令实在是太简单了&#xff0c;简单到了令人发指的地步&#xff0c;只有这么几类指令&…

《码农翻身》

大话编程 我是一个线程 我是一个Java class Javascript: 一个屌丝的逆袭 Java:一个帝国的诞生 JSP:一个装配工的没落 TCP/IP 之 大明王朝的邮差 TCP/IP 之 大明内阁 TCP/IP 之 蓟辽督师 CPU 阿甘 CPU 阿甘之烦恼 CPU 阿甘&#xff1a;函数调用的秘密 我是一个网卡 …

码农翻身 各章节链接

大话编程 我是一个线程 我是一个Java class Javascript: 一个屌丝的逆袭 Java:一个帝国的诞生 JSP:一个装配工的没落 TCP/IP 之 大明王朝的邮差 TCP/IP 之 大明内阁 TCP/IP 之 蓟辽督师 CPU 阿甘 CPU 阿甘之烦恼 CPU 阿甘&#xff1a;函数调用的秘密 我是一个网卡 …