什么是人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
目前的人脸识别技术已经非常成熟了,还发展成3D人脸识别。而且现在各大厂商也都提供了人脸识别的API接口供我们调用,可以说几行代码就可以完成人脸识别。但是人脸识别的根本还是基于图像处理。在Python中最强大的图像处理库就是OpenCV。
OpenCV简介
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV基本使用
安装
pip install opencv-python # 基础库pip install opencv-contrib-python # 扩展库pip install opencv-python-headless
读取图片
读取和显示图片是最基本的操作了,OpenCV当中使用imread和imshow实现该操作
import cv2 as cv# 读取图片,路径不能含有中文名,否则图片读取不出来image = cv.imread('1111.jpg')# 显示图片cv.imshow('image', image)# 等待键盘输入,单位是毫秒,0表示无限等待cv.waitKey(0)# 因为最终调用的是C++对象,所以使用完要释放内存cv.destroyAllWindows()

将图片转为灰度图
OpenCV中数百中关于不同色彩控件之间转换的方法。目前最常用的有三种:灰度、BGR、HSV。
- 灰度色彩空间是通过去除彩色信息来讲图片转换成灰阶,灰度图会大量减少图像处理中的色彩处理,对人脸识别很有效。
- BGR每个像素都由一个三元数组来表示,分别代码蓝、绿、红三种颜色。python中还有一个库PIL,读取的图片通道是RGB,其实是一样的,只是颜色顺序不一样
- HSV,H是色调,S是饱和度,V是黑暗的程度
将图片转换为灰度图
import cv2 as cv# 读取图片,路径不能含有中文名,否则图片读取不出来image = cv.imread('1111.jpg')# cv2读取图片的通道是BGR,# PIL读取图片的通道是RGB# code选择COLOR_BGR2GRAY,就是BGR to GRAYgray_image = cv.cvtColor(image, code=cv.COLOR_BGR2GRAY)# 显示图片cv.imshow('image', gray_image)# 等待键盘输入,单位是毫秒,0表示无限等待cv.waitKey(0)# 因为最终调用的是C++对象,所以使用完要释放内存cv.destroyAllWindows()