深度学习-浅谈CNNs

article/2025/10/2 5:19:59

偶尔看到了这篇文章,感觉作者写的很容易理解,对于初步认识CNNs有很大的帮助,若想查看原文,请点击此处


关于神经网络的学习方法,总结起来的要点有以下几点:

  • BP算法
  • 激励函数
  • 正则化与交叉验证等其他防止过拟合的方法

BP神经网络在之前的工作中取到了不错的效果,但是在Micheal Nilson的数的第五章,描述了之前的神经网络在增加多个隐含层之后训练效果会大大下降,也就是说,对于层数过多的网络训练效果不理想,如何训练深层的神经网络成了一个问题,这就是深度学习的由来。

深度学习近些年来很火,尤其是在自然语言处理领域,其取得的成就也是巨大的。之前我对深度学习是有畏惧心理的,因为我觉得挺难的,后来慢慢接触,发现这个也是一个循序渐进的过程,还是要有信心。

深度学习一个最广泛的应用就是卷积神经网络(deep convolutional neural networks),也就是CNN。这篇文章就简要说一下CNN模型的基本模型。

1. Introduction of Convolutional Networks

还是以之前的手写数字识别为基本,阐述CNN。

首先从之前的BP神经网络慢慢过渡到CNN,回顾之前的手写识别问题,我们识别一副28*28的手写图片,我们将图片转换成像素,然后手写黑色点得像素点标注为1,其他空白的像素标注为0,因此形成了28*28个BP神经网络输入层,然后我们设计了一个30个神经元的中间层,以及最后的10个神经元的输入层,其典型结构如下:

这里写图片描述

但是当我们想在这个模型上加了隐藏层层数的时候,其训练结果就出现了很大的不稳定,在加入多个隐藏层之后需要学习的参数变得很多,这一方面增加了训练的难度,也增加了训练的不稳定性,在传统的神经网络模型中,难以对深层的网络进行训练,这就形成了一个瓶颈。因此需要一些新的模型,CNN就是这样的新的模型。卷积神经网络的基本思想有以下三点:

  • Local Receptive Fields (局部视野)
  • Shared Weights(权值共享)
  • Pooling Layer(池化层)

2. Local Receptive Fields

在之前介绍的神经网络中,每个层的神经元总是与前面一层的所有神经元相连,也就是全相连,回想之前的BP神经网络,在隐藏层的神经元每个都和输入层的28*28个直接相连,也就是说每个盛景园需要训练 28*28+1个参数,但是在CNN中,隐藏层的神经元并不一定会和之前的所有神经元相连,以手写数字识别为例,每个隐藏层的神经元都会和输入层的部分神经元相连,如下图:

这里写图片描述

已上图为例,隐藏层的神经元与输入层的5*5个神经元相连,而这个5*5的区域就称之为Local Receptive Fields,在上图的隐藏层神经元中,需要训练5*5+1个参数,也就是5*5个与上面映射区域的权重因子和一个偏移量bias。然后我们将上图的5*5大小的窗口从上图的左上角,按照从左到右,从上到下的规则逐渐移动到右下角,每次移动一个像素点(这个是举例,实际上可以改变这个值),因此我们可以得到如下的图:
如上图所示的移动方法,我们可以很顺利的推出,隐藏层的结果是24*24个神经元(按照窗口移动法则)
明白了这点,我们就可以来了解shared weights and biases概念了。

3. Shared Weights and Biases

前面说到过,在隐藏层的每个神经元都是有5*5+1个参数,也就是25个权重w和一个偏移量b,但是之前没有提到的是,在这个隐藏层中,所有的神经元的参数的值都是一样的,也就是说,对于隐藏层的所有神经元,其输出都是满足下面的条件:

这里写图片描述

只不过,每个神经元对应的映射区域不一样,也就是说上式的a值不同而已。注意上面式子的大括号左边表示的是激励函数,比如我们前面用到过的sigmoid函数。

为什么这样设计是有意义的,可以用一个简单的比喻说明:一个猫的图片的其中一个部分和其他的部分都是猫的一部分,也就是说都是猫的特征,因此这两个部分的特征值(w,b)设置成一样的。也是这样,有时候,我们将从输入层到隐藏层的映射称之为 feature map(特征映射)。shared weights 和bias经常被说成是 内核(kernel)或者过滤器(filter)。

实际应用中,我们可能会不只一个feature map,可能会有多个,如下图所示:

这里写图片描述

上图就展示了从输入层到隐藏层的三个feature map,每个map都有5*5+1个的训练特征,注意每一个map上的神经元的w和b是一样的,但是不同的map之间则不一定(一般不一样)。

4. Pooling Layer

Pooling Layer一般在卷基层后面(卷基层对应上面的隐藏层),该层的目的是为了简化卷基层的训练输出数据。形象的说,pooling layer就是将卷基层进行压缩一下,举个例子,pooling layer的一个神经元可以对应卷积层的2*2区域的概括,具体的说,以最常用max pooling为例,在max pooling中,pooling层的每一个神经元的值对应卷积层的2*2的区域的最大输出值,如下图所示:

这里写图片描述

在24*24的卷积层压缩之后,在pooling就只有12*12大小了。上文说过,卷积层的个数可能不止一个,因此一般会有下面的结构:

这里写图片描述

当然不止是max pooling一种技术用在了pooling layer,比如还有一种叫 L2 pooling的技术:其方法是取卷积层2*2区域输出值的和值的开根号值,诸如此类。需要说明的是一直说的2*2区域只是为了描述随便选的,并不是一定是2*2区域。

好了,现在可以将上面的所有元素组成一个整体了.我们可以使用下面的CNN网络模型:

这里写图片描述

得到了模型,我们还是可以按照之前的梯度下降方法来求参数值,会在后面的学习中跟进这个部分。
上图的最后一层是输出层,也就是手写识别的10个数字,需要说明的是这个输出层和pooling层是全连接的,也就是说,输出层的每个神经元都是和pooling层的所有神经元相连的。可以在中间多加几个卷积层和pooling层。

这些是CNN的基本模型,而且也只是以单个卷积层和pooling层为例,实际中可能会有多个卷积层,而且对应的全连接情况也是变化很多,比如我们我可在输出层之前再加一个全连接层。变化很多,因此这里只是简单的描述一下概念,后面会对CNN有更加深入的探讨。


http://chatgpt.dhexx.cn/article/8DC1O1KM.shtml

相关文章

【GSCNN】GSCNN:Gated Shape CNNs for Semantic Segmentation论文记录

目录 简单不看版: 摘要 一、介绍 二、相关工作 三、Gated Shape CNN 代码 四、实验 五.总结 论文:https://arxiv.org/abs/1907.05740 代码:GitHub - nv-tlabs/GSCNN: Gated-Shape CNN for Semantic Segmentation (ICCV 2…

CNNs和视觉Transformer:分析与比较

探索视觉Transformer和卷积神经网络(CNNs)在图像分类任务中的有效性。 图像分类是计算机视觉中的关键任务,在工业、医学影像和农业等各个领域得到广泛应用。卷积神经网络(CNNs)是该领域的一项重大突破,被广…

你应该知道的9篇深度学习论文(CNNs 理解)

当时看到英文的博客,本想翻译给感兴趣的同学们看看,没想到已经有人翻译,于是进行了转载,留给自己和更多的人学习,本文仅供参考。 英文博客:https://adeshpande3.github.io/adeshpande3.github.io/The-9-Dee…

【神经网络】CNN

CNN工作原理笔记 卷积神经网络定义卷积运算池化激活函数全连接反向传播算法其他应用延伸知识 首先放个学习视频链接: 大白话讲解卷积神经网络工作原理. 卷积神经网络定义 CNN其实就相当于黑箱,有输入有输出 输入:二维像素阵列 输出:判决结果…

CNN+RNN

CNN,RNN(recurrent, 下同)结合到一起可以建立一个更好的model 1. CRNN(先CNN,后RNN) References: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 一般用于基…

CNNs: ZFNet之CNN的可视化网络介绍

CNNs: ZFNet之CNN的可视化网络介绍 导言Deconvnet1. Unpooling2. ReLU3. Transpose conv AlexNet网络修改AlexNet Deconv网络介绍特征可视化 导言 上一个内容,我们主要学习了AlexNet网络的实现、超参数对网络结果的影响以及网络中涉及到一些其他的知识点&#xff0…

吊炸天的CNNs,这是我见过最详尽的图解!(上)

导读:卷积神经网络(CNNs)在“自动驾驶”、“人脸识别”、“医疗影像诊断”等领域,都发挥着巨大的作用。这一无比强大的算法,唤起了很多人的好奇心。当阿尔法狗战胜了李世石和柯杰后,人们都在谈论“它”。但…

深度学习—CNN

CNN简介 卷积神经网络 – CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。 CNN 有2大特点: 能够有效的将大数据量的图片降维成小数据量能够有效的保留图片特征,符合图片处理的原则 目前 CNN 已经得到了广泛的应用,比如&…

吊炸天的CNNs,这是我见过最详尽的图解!(下)

【摘要】本文详细介绍了卷积神经网络的运行原理,特别是池化、全连接等过程。为了使大家更快、更轻松的入门,文章没有晦涩难懂的术语和公式,全部采用“图形”的方式来描述。文末的延展阅读部分,更加入了彩色图片卷积原理的手工演算…

CNNs:ZFNet之基于AlexNet特征可视化实验分析

CNNs:ZFNet之基于AlexNet特征可视化实验分析 导言基于AlexNet网络的实验分析实验一:不同卷积层特征提取分析实验二:不同卷积层提取特征收敛分析 ZFNet网络介绍基于ZFNet网络的实验分析实验三:针对AlexNet特征提取改善可视化实验四:特征不变性…

CNN详细学习

前馈神经网络 MLP:multi-layer percetron Feed Forward and Back error propagation解决异或划分问题 缺点: 容易过拟合容易陷入局部最优化梯度消失计算资源不充分,训练集小 DNN 深一点效果好,宽一点容易理解,发现…

CNNs 入门论文汇总

Introduction 本文主要总结了卷积神经网络在机器视觉领域的重要发展及其应用。我们将介绍几篇重要的公开发表的论文,讨论它们为何重要。前一半的论文(AlexNet到ResNet)将主要涉及整体系统架构的发展和演变,后一半论文将主要集中在…

论文阅读和分析:《DeepGCNs: Can GCNs Go as Deep as CNNs?》

下面所有博客是个人对EEG脑电的探索,项目代码是早期版本不完整,需要完整项目代码和资料请私聊。 数据集 1、脑电项目探索和实现(EEG) (上):研究数据集选取和介绍SEED 相关论文阅读分析: 1、EEG-SEED数据集作者的—基线论文阅读和…

Gated-SCNN: Gated Shape CNNs for Semantic Segmentation

目录 作者 一、Model of Gated-SCNN 二、 Gated Shape CNN 1.Regular Stream 2.Shape Stream 3. Gate Conv Layer 4.ASPP 5 总代码 三 损失函数 1.BoundaryBCELoss 2.DualTaskLoss 作者 一、Model of Gated-SCNN 文章使用了双流CNN来处理语义分割中的边界问题,分为R…

(整理)吊炸天的CNNs,这是我见过最详尽的图解!(下)

之前在CSDN上看到这篇文章,觉得通俗易懂,写的非常好。不过近来再次查看,发现文章的照片莫名其妙的没有了,没有图就根本看不懂了。找到了之前关注的微信公众号:AI传送门 。 在里面找到了这篇文章,决定再把这…

CNNs详尽图解

已经成为每一个初入人工智能——特别是图像识别领域的朋友,都渴望探究的秘密。 本文通过“算法可视化”的方法,将卷积神经网络的原理,呈献给大家。教程分为上、下两个部分,通篇长度不超过7000字,没有复杂的数学公式&a…

学习笔记:利用CNNs进行图像分类

1.神经网络图像(CNNs)分类简介 本文将重点关注卷积神经网络,也被称为CNNs或Convnets。CNNs是一种特殊类型的神经网络,特别适合于图像数据。自2012年以来,ImageNet竞赛(ImageNet)一直由CNN架构赢得。 在本文中&#x…

(整理)吊炸天的CNNs,这是我见过最详尽的图解!(上)

之前在CSDN上看到这篇文章,觉得通俗易懂,写的非常好。不过近来再次查看,发现文章的照片莫名其妙的没有了,没有图就根本看不懂了。找到了之前关注的微信公众号:AI传送门 。 在里面找到了这篇文章,决定再把这…

交叉验证

概述Holdout 交叉验证K-Fold 交叉验证Leave-P-Out 交叉验证总结 概述 交叉验证是在机器学习建立模型和验证模型参数时常用的办法。 顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集。 用训练集来训练模型&…