常用的Python3关键词提取方法

article/2025/9/21 20:02:55

诸神缄默不语-个人CSDN博文目录

本文将介绍一些简单的使用Python3实现关键词提取的算法。目前仅整理了一些比较简单的方法,如后期将了解更多、更前沿的算法,会继续更新本文。

文章目录

  • 1. 基于TF-IDF算法的中文关键词提取:使用jieba包实现
  • 2. 基于TextRank算法的中文关键词提取:使用jieba包实现
  • 3. 基于TextRank算法的中文关键词提取(使用textrank_zh包实现)
  • 3. 没说基于什么算法的中文词语重要性:LAC实现
  • 4. KeyBert

1. 基于TF-IDF算法的中文关键词提取:使用jieba包实现

extracted_sentences="随着企业持续产生的商品销量,其数据对于自身营销规划、市场分析、物流规划都有重要意义。但是销量预测的影响因素繁多,传统的基于统计的计量模型,比如时间序列模型等由于对现实的假设情况过多,导致预测结果较差。因此需要更加优秀的智能AI算法,以提高预测的准确性,从而助力企业降低库存成本、缩短交货周期、提高企业抗风险能力。"import jieba.analyse
print(jieba.analyse.extract_tags(extracted_sentences, topK=20, withWeight=False, allowPOS=()))

输出:

Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.457 seconds.
Prefix dict has been built successfully.
['预测', '模型', '销量', '降低库存', '企业', 'AI', '规划', '提高', '准确性', '助力', '交货', '算法', '计量', '序列', '较差', '繁多', '过多', '假设', '缩短', '营销']

函数入参:

  • topK:返回TF-IDF权重最大的关键词的数目(默认值为20)
  • withWeight 是否一并返回关键词权重值,默认值为 False
  • allowPOS 仅包括指定词性的词,默认值为空,即不筛选

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径:
用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径:
用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py

2. 基于TextRank算法的中文关键词提取:使用jieba包实现

extracted_sentences="随着企业持续产生的商品销量,其数据对于自身营销规划、市场分析、物流规划都有重要意义。但是销量预测的影响因素繁多,传统的基于统计的计量模型,比如时间序列模型等由于对现实的假设情况过多,导致预测结果较差。因此需要更加优秀的智能AI算法,以提高预测的准确性,从而助力企业降低库存成本、缩短交货周期、提高企业抗风险能力。"import jieba.analyse
print(jieba.analyse.textrank(extracted_sentences, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')))

输出:

Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.451 seconds.
Prefix dict has been built successfully.
['企业', '预测', '模型', '规划', '提高', '销量', '比如', '时间', '市场', '分析', '降低库存', '成本', '缩短', '交货', '影响', '因素', '情况', '计量', '现实', '数据']

入参和第一节中的入参相同,但allowPOS的默认值不同。

TextRank用固定窗口大小(默认为5,通过span属性调整),以词作为节点,以词之间的共现关系作为边,构建无向带权图。
然后计算图中节点的得分,计算方式类似PageRank。
对PageRank的计算方式和原理的更深入了解可以参考我之前撰写的博文:cs224w(图机器学习)2021冬季课程学习笔记4 Link Analysis: PageRank (Graph as Matrix)_诸神缄默不语的博客-CSDN博客

3. 基于TextRank算法的中文关键词提取(使用textrank_zh包实现)

待补。

3. 没说基于什么算法的中文词语重要性:LAC实现

最后输出的数值就是对应词语的重要性得分。

extracted_sentences="随着企业持续产生的商品销量,其数据对于自身营销规划、市场分析、物流规划都有重要意义。但是销量预测的影响因素繁多,传统的基于统计的计量模型,比如时间序列模型等由于对现实的假设情况过多,导致预测结果较差。因此需要更加优秀的智能AI算法,以提高预测的准确性,从而助力企业降低库存成本、缩短交货周期、提高企业抗风险能力。"from LAC import LAC
lac=LAC(mode='rank')
seg_result=lac.run(extracted_sentences)  #以Unicode字符串为入参
print(seg_result)

输出:

W0625 20:13:22.369424 33363 init.cc:157] AVX is available, Please re-compile on local machine
W0625 20:13:22.455566 33363 analysis_predictor.cc:518]  - GLOG's LOG(INFO) is disabled.
W0625 20:13:22.455617 33363 init.cc:157] AVX is available, Please re-compile on local machine
--- Running analysis [ir_graph_build_pass]
--- Running analysis [ir_graph_clean_pass]
--- Running analysis [ir_analysis_pass]
--- Running IR pass [simplify_with_basic_ops_pass]
--- Running IR pass [attention_lstm_fuse_pass]
--- Running IR pass [seqconv_eltadd_relu_fuse_pass]
--- Running IR pass [seqpool_cvm_concat_fuse_pass]
--- Running IR pass [fc_lstm_fuse_pass]
--- Running IR pass [mul_lstm_fuse_pass]
--- Running IR pass [fc_gru_fuse_pass]
--- Running IR pass [mul_gru_fuse_pass]
--- Running IR pass [seq_concat_fc_fuse_pass]
--- Running IR pass [fc_fuse_pass]
--- Running IR pass [repeated_fc_relu_fuse_pass]
--- Running IR pass [squared_mat_sub_fuse_pass]
--- Running IR pass [conv_bn_fuse_pass]
--- Running IR pass [conv_eltwiseadd_bn_fuse_pass]
--- Running IR pass [is_test_pass]
--- Running IR pass [runtime_context_cache_pass]
--- Running analysis [ir_params_sync_among_devices_pass]
--- Running analysis [adjust_cudnn_workspace_size_pass]
--- Running analysis [inference_op_replace_pass]
--- Running analysis [ir_graph_to_program_pass]
W0625 20:13:22.561131 33363 analysis_predictor.cc:518]  - GLOG's LOG(INFO) is disabled.
W0625 20:13:22.561169 33363 init.cc:157] AVX is available, Please re-compile on local machine
--- Running analysis [ir_graph_build_pass]
--- Running analysis [ir_graph_clean_pass]
--- Running analysis [ir_analysis_pass]
--- Running IR pass [simplify_with_basic_ops_pass]
--- Running IR pass [attention_lstm_fuse_pass]
--- Running IR pass [seqconv_eltadd_relu_fuse_pass]
--- Running IR pass [seqpool_cvm_concat_fuse_pass]
--- Running IR pass [fc_lstm_fuse_pass]
--- Running IR pass [mul_lstm_fuse_pass]
--- Running IR pass [fc_gru_fuse_pass]
--- Running IR pass [mul_gru_fuse_pass]
--- Running IR pass [seq_concat_fc_fuse_pass]
--- Running IR pass [fc_fuse_pass]
--- Running IR pass [repeated_fc_relu_fuse_pass]
--- Running IR pass [squared_mat_sub_fuse_pass]
--- Running IR pass [conv_bn_fuse_pass]
--- Running IR pass [conv_eltwiseadd_bn_fuse_pass]
--- Running IR pass [is_test_pass]
--- Running IR pass [runtime_context_cache_pass]
--- Running analysis [ir_params_sync_among_devices_pass]
--- Running analysis [adjust_cudnn_workspace_size_pass]
--- Running analysis [inference_op_replace_pass]
--- Running analysis [ir_graph_to_program_pass]
[['随着', '企业', '持续', '产生', '的', '商品', '销量', ',', '其', '数据', '对于', '自身', '营销', '规划', '、', '市场分析', '、', '物流', '规划', '都', '有', '重要', '意义', '。', '但是', '销量', '预测', '的', '影响', '因素', '繁多', ',', '传统', '的', '基于', '统计', '的', '计量', '模型', ',', '比如', '时间', '序列', '模型', '等', '由于', '对', '现实', '的', '假设', '情况', '过多', ',', '导致', '预测', '结果', '较差', '。', '因此', '需要', '更加', '优秀', '的', '智能', 'AI算法', ',', '以', '提高', '预测', '的', '准确性', ',', '从而', '助力', '企业', '降低', '库存', '成本', '、', '缩短', '交货', '周期', '、', '提高', '企业', '抗', '风险', '能力', '。'], ['p', 'n', 'vd', 'v', 'u', 'n', 'n', 'w', 'r', 'n', 'p', 'r', 'vn', 'n', 'w', 'n', 'w', 'n', 'n', 'd', 'v', 'a', 'n', 'w', 'c', 'n', 'vn', 'u', 'vn', 'n', 'a', 'w', 'a', 'u', 'p', 'v', 'u', 'vn', 'n', 'w', 'v', 'n', 'n', 'n', 'u', 'p', 'p', 'n', 'u', 'vn', 'n', 'a', 'w', 'v', 'vn', 'n', 'a', 'w', 'c', 'v', 'd', 'a', 'u', 'n', 'nz', 'w', 'p', 'v', 'vn', 'u', 'n', 'w', 'c', 'v', 'n', 'v', 'n', 'n', 'w', 'v', 'vn', 'n', 'w', 'v', 'n', 'v', 'n', 'n', 'w'], [0, 1, 1, 1, 0, 2, 2, 0, 1, 2, 0, 1, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 2, 1, 2, 0, 2, 0, 0, 2, 0, 2, 1, 0, 1, 2, 2, 1, 0, 0, 0, 2, 0, 2, 1, 2, 0, 1, 2, 2, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 1, 1, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0]]

在这里插入图片描述

4. KeyBert

(待补)


http://chatgpt.dhexx.cn/article/6bwbj4su.shtml

相关文章

NLP——关键词提取

NLP——关键词提取 文章目录 NLP——关键词提取前言一、TF-IDF算法1. 基本原理2. 算法改进 二、TextRank算法1. 基本原理2. PageRank算法3. TextRank算法4. TextRank算法在关键词提取的应用 三、LSA/LSI/LDA算法1. LSA/LSI算法2. LDA算法 四、实战练习 前言 关键词提取分为有监…

文本关键词提取:ansj

背景 因为文本内容里面,需要提取出关键词给到seo作关键词。 同时内容是中文的,需要找个对应的中文分词和提取工具。 ansj 根据官方介绍,感觉还是比较厉害的样子。 官方说明: 这是一个基于n-GramCRFHMM的中文分词的java实现。…

[转]NLP关键词提取方法总结及实现

最近在研究关键词的提取算法,看到一篇关于关键词提取算法的总结,比较全面了,在这里分享给大家,希望能够帮助同学们~ 原文链接:https://blog.nowcoder.net/n/ac016f8256f54c4b8c8784e99bccf28a (ps:作者同意…

文本中的关键词提取方法

目录 1. TF-IDF(Term Frequency-Inverse Document Frequency)算法: 2. TextRank算法: 3. LDA(Latent Dirichlet Allocation)算法: 4. RAKE(Rapid Automatic Keyword Extraction&…

关键词抽取方法

1、关键词提取 为了方便用户快速了解文章的中心主题,会抽取文章的一些中心词来表达文章的中心思想。关键词抽取就是通过一定的方法抽取出能表达文章的中心主题的一系列方法。 2、关键词抽取方法分类 2.1、有监督无监督抽取方法 无监督关键词提取方法主要有三类&…

自然语言处理之——关键词提取(一)

一. 摘要 本次的分享中,我们将了解目前较常用的关键词提取技术。关键词是代表文章重要内容的一组词。在文本的分类聚类、自动摘要等方面有着重要的作用。还可以让人们更直观便捷的浏览文本信息。在现实的常用文本中是不包含关键词的,所以自动…

记一次 watchbog 挖矿病毒的清理

突然发现服务器上的mysql数据库连接不上遂使用xshell连接服务器查看进程发现被一个叫watchbog的进程沾满了cpu 通过查阅资料发现该病毒通过定时器 不断下载挖矿程序脚本 先清除 crontab中不属于自己的内容 kill掉所有的watchbog进程 bog 不是dog 查找到服务器上所有的…

手工清除Windows服务器上的Steam挖矿病毒:HackTool/CoinMiner.a及Trojan/Miner.ac

手工清除Windows服务器上的Steam挖矿病毒:HackTool/CoinMiner.a及Trojan/Miner.ac 起因: 最近服务器群里的两台Windows虚拟服务器上的CPU占用率超级高(已经达到了91%),严重影响公司程序的正常运行,但是又不能安装杀毒软…

2019上半年恶意挖矿趋势报告

上一期,深信服安全团队对勒索病毒进行2019半年度总结,主要盘点了高发勒索家族、受灾区域分布、勒索病毒发展走向等。本期深信服安全团队对另一流行病毒类型——挖矿木马进行深入分析,给大家揭秘2019上半年挖矿木马的所作所为。 一、2019上半…

服务器被加了挖矿代码

2019独角兽企业重金招聘Python工程师标准>>> 平时很少使用的一台服务器,24G内存,在上面搭建了Hadoop环境。 突然发现负载好高,top看了一下,一个java进程占用了很多cpu 疑似国内来源的“8220挖矿团伙”追踪溯源分析 挖矿…

威胁快报|Nexus Repository Manager 3新漏洞已被用于挖矿木马传播,建议用户尽快修复...

2019独角兽企业重金招聘Python工程师标准>>> 背景 近日,阿里云安全监测到watchbog挖矿木马使用新曝光的Nexus Repository Manager 3远程代码执行漏洞(CVE-2019-7238)进行攻击并挖矿的事件。 值得注意的是,这一攻击开始的时间(2月2…

威胁快报|ProtonMiner挖矿蠕虫扩大攻击面,加速传播

2019独角兽企业重金招聘Python工程师标准>>> 背景 近日,阿里云安全监测到一种挖矿蠕虫,正在互联网上加速传播。阿里云安全根据它使用ProtonMail邮箱地址作为矿池用户名的行为,将其命名为ProtonMiner。据分析,这种蠕虫与…

记一次mykings暗云挖矿木马的排查与解决

微信公众号:运维开发故事,作者:wanger 起因 之前有一台做测试的Windows server2012阿里云服务器的防火墙关掉之后开机总是启动,想了很多办法也没找到原因就提了工单问了售后,结果售后也没发现问题,并提示我…

应急响应流程以及入侵排查

归纳转载于: 应急响应的整体思路和基本流程 - FreeBuf网络安全行业门户不管是普通的企业,还是专业的安全厂商,都不可避免的需要掌握和运用好信息安全的知识、技能,以便在需要的时候,能够御敌千里。https://www.freebu…

阿里云服务器被挖矿程序minerd入侵的终极解决办法

突然发现阿里云服务器CPU很高,几乎达到100%,执行 top c 一看,吓一跳,结果如下: 3798 root 20 0 386m 7852 1272 S 300.0 0.1 4355:11 /tmp/AnXqV -B -a cryptonight -o stratumtcp://xmr.crypto-pool.fr:44…

如何更有效的消灭watchdogs挖矿病毒?华为云DCS Redis为您支招

2019独角兽企业重金招聘Python工程师标准>>> 漏洞概述 近日,互联网出现watchdogs挖矿病毒,攻击者可以利用Redis未授权访问漏洞入侵服务器,通过内外网扫描感染更多机器。被感染的主机出现 crontab 任务异常、系统文件被删除、CPU 异…

2t3ik与ddgs挖矿病毒处理

为什么80%的码农都做不了架构师?>>> http://ju.outofmemory.cn/entry/351669 转载于:https://my.oschina.net/lgfei/blog/1809898

Linux 服务器上有挖矿病毒 kdevtmpfsi 如何处理?

本文转载自:https://my.oschina.net/u/4437985/blog/3168526 侵删 症状表现 服务器CPU资源使用一直处于100%的状态,通过 top 命令查看,发现可疑进程 kdevtmpfsi。通过 google搜索,发现这是挖矿病毒。 排查方法 首先&#xf…

[问题已处理]-阿里云与本地机房中挖矿病毒处理,又又又中毒了

导语:被挖矿的现象是cpu异常的高。正常服务被系统杀掉。 先是发现线上业务挂了。紧接着发现本地机房也挂了。判断病毒应该是由本地机房的跳板机或者开放的端口,或dubbo框架漏洞进来的 基本判断是confluence最新的漏洞导致的 http://www.hackdig.com/0…

IDEA连接阿里云ECS运行的docker,及处理挖矿病毒kdevtmpfsi的经历

文章目录 前置条件docker版本:1.13.1相关参考文章 1.修改docker相关配置1.1 修改docker配置文件1.2 重新加载配置文件1.3 重启docker 2.配置阿里云ECS开放端口23753.配置IDEA的原生插件连接Docker4.配置IDEA的AlibabaCloudToolkit插件连接Docker5.因为开放了远程连接…