无监督模型 训练过程_监督使用训练模型

article/2025/10/29 15:50:26

无监督模型 训练过程

Machine Learning, Artificial Intelligence, and Deep Learning are some of the most complex, yet highly demanded fields of expertise today. There are innumerable resources and tools to work in these fields, and one such popular tool is Supervisely.

机器学习,人工智能和深度学习是当今最复杂但要求很高的专业领域。 在这些领域中有无数的资源和工具可以使用,而Supervisely是其中一种流行的工具。

Supervisely is a web platform where we can build Deep Learning solutions. It is a service meant for dataset management, annotation, and preparation for Deep Learning. Supervisely is used by students, researchers, and businessmen to manage large-scale datasets and even preserve privacy by working with Supervisely on their servers.

Supervisely是一个Web平台,我们可以在其中构建深度学习解决方案。 它是用于数据集管理,注释和深度学习准备的服务。 学生,研究人员和商人使用Supervisely来管理大规模数据集,甚至通过在服务器上与Supervisely一起工作来保护隐私。

In this article, we will be looking at how to train models using Transfer Learning in Supervisely. To work with Supervisely, we first need to create an account. For non-commercial purposes, the account is created for free.

在本文中,我们将研究如何在Supervisely中使用Transfer Learning训练模型。 要与Supervisely合作,我们首先需要创建一个帐户。 出于非商业目的,免费创建该帐户。

When the account is first created, we are logged in as the admin user. There is a default workspace that is created. We can continue with this workspace or create our own. A sample of a custom workspace is shown below with the name MLOps_Task 6.

首次创建帐户时,我们以管理员用户身份登录。 存在一个默认的工作区。 我们可以继续使用此工作空间或创建自己的工作空间。 下面显示了名称为MLOps_Task 6的自定义工作区的示例。

Image for post
Figure 1: Creation of new workspace
图1:创建新的工作区

Inside the new workspace, we can start a new project by importing the required dataset.

在新的工作空间内,我们可以通过导入所需的数据集来启动新项目。

Image for post
Figure 2: Importing the dataset (Part 1)
图2:导入数据集(第1部分)

The dataset can be imported by a simple drag-and-drop operation from the local system onto the given space.

可以通过简单的拖放操作将数据集从本地系统导入给定空间。


http://chatgpt.dhexx.cn/article/4wLqiNKU.shtml

相关文章

Tensorflow V2 图像识别模型训练流程

Tensorflow V2.0 图像识别教程 代码: https://github.com/dwSun/classification-tutorial.git 教程参考官方专家高级教程: https://tensorflow.google.cn/tutorials/quickstart/advanced?hlen 这里以 TinyMind 《汉字书法识别》比赛数据为例&#xf…

(三)mmclassification图像分类——模型训练

(三)mmclassification图像分类——模型训练和测试 1.模型训练1.1使用预训练模型1.2使用自己的数据训练1.2.1制作数据集1.2.2修改模型参数(configs文件)(1)models(2)datasets(3)schedules(4)新建mobilenet_v2_b32x8_car.py 1.3训练…

tensorflow CNN模型训练+优化参数+实战

训练线性函数 import numpy as np import tensorflow.keras as keras # 构建模型 model keras.Sequential([keras.layers.Dense(units1,input_shape[1])]) # optimizer优化,loss损失 model.compile(optimizersgd, lossmean_squared_error) #准备训练数据 xsnp.ar…

nanodet训练手势识别模型

序言 前段时间nanodet爆火,以非常小的模型和运算量,取得了超过tiny-yolov4的精度,非常惊艳,因为时间问题一直没有尝试,最近有空决定尝试一下。先来看下作者给的模型效果 一、nanodet安装 首先安装nanodet的环境包…

Pytorch教程[10]完整模型训练套路

一般的模型构建都是按照下图这样的流程 下面分享一个自己手动搭建的网络 from model import * import torchvision import torch from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from torch import nn from torch.utils.data import …

PaddleOCR学习(二)PaddleOCR检测模型训练

这一部分主要介绍,如何使用自己的数据库去训练PaddleOCR的文本检测模型。 官方教程https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/detection.md 一、准备训练数据 首先你需要有自己的数据,如果没有自己的数据,推荐使…

迁移学习的模型训练

用深度学习解决目标检测有两个重要工作: 1、设计、实现、训练和验证模型 模型如果设计模型如何编程实现如何收集足够的数据来训练并验证模型是否符合预期 从头开始设计、实现、训练和验证模型是需要有众多深度学习算法人才做支撑,并且极其耗时耗力 2、…

TF2.0模型训练

TF2.0模型训练 概述数据集介绍1、通过fit方法训练模型准备数据创建模型编译模型训练模型 2、通过fit_generator方法训练模型构建生成器创建模型编译模型训练模型 3、自定义训练准备数据创建模型定义损失函数及优化器训练模型 下一篇TF2.0模型保存 概述 这是TF2.0入门笔记【TF2…

TensorFlow 2.0 —— 模型训练

目录 1、Keras版本模型训练1.1 构造模型(顺序模型、函数式模型、子类模型)1.2 模型训练:model.fit()1.3 模型验证:model.evaluate()1.4 模型预测:model.predict()1.5 使用样本加权和类别加权1.6 回调函数1.6.1 EarlySt…

如何在jupyter上运行Java代码(适用LINUX)

如何在jupyter上运行Java代码 1.下载必须软件 下载JDK且JDK版本必须 ≥ 9 ≥9 ≥9从github上下载ijava 附 : ijava下载链接.装有jupyter,我在LINUX上是直接装的anaconda 安装过程 将下载的ijava压缩包解压出来,并在此路径用该命令 : sudo…

Java单元测试介绍

文章目录 单元测试单元测试基本介绍单元测试快速入门单元测试常用注解 单元测试 单元测试基本介绍 单元测试: 单元测试就是针对最小的功能单元编写测试代码,Java程序最小的功能单元是方法,因此,单元测试就是针对Java方法的测试,…

Jupyter 配置 Java环境,写Java代码,测试成功

本次简单诉说下怎么通过jupyter安装iJava,写Java代码。 安装Java的不说了 我使用的是Java15 然后去:https://github.com/SpencerPark/IJava/releases 下载zip,不要下载其他的 得到就是一个py文件 下面就是一个 python install.py 我这里就…

java调用python执行脚本,附代码

最近有个功能需要java调用python脚本实现一些功能,前期需要做好的准备:配置好python环境,如下: 以下展示的为两种,一种为生成图片,另一种为生成字符串。 package com.msdw.tms.common.utils.py;import ja…

Selenium Java自动化测试环境搭建

IDE用的是Eclipse。 步骤1:因为是基于Java,所以首先要下载与安装JDK(Java Development Kit) 下载: 点击这里下载JDK 安装:按照默认安装一路点next就可以了。 验证:安装完成后,在命…

java单元测试(Junit)

相关代码下载链接: http://download.csdn.net/detail/stevenhu_223/4884357 在有些时候,我们需要对我们自己编写的代码进行单元测试(好处是,减少后期维护的精力和费用),这是一些最基本的模块测试。当然&…

Java单元测试工具:JUnit4(一)——概述及简单例子

(一)JUnit概述及一个简单例子 看了慕课网的JUnit视频教程: http://www.imooc.com/learn/356,总结笔记。 这篇笔记记录JUnit的概述,以及一个快速入门的例子。 1.概述 1.1 什么是JUnit ①JUnit是用于编写可复用测试集的…

Linux下执行Python脚本

1.Linux Python环境 Linux系统一般集成Python,如果没有安装,可以手动安装,联网状态下可直接安装。Fedora下使用yum install,Ubuntu下使用apt-get install,前提都是root权限。安装完毕,可将Python加入环境变…

python pytest脚本执行工具

pytest脚本执行工具 支持获取当前路径下所有.py脚本 添加多个脚本,一起执行 import tkinter as tk from tkinter import filedialog import subprocess import os from datetime import datetimedef select_script():script_path filedialog.askopenfilename(fil…

linux上运行python(简单版)

linux上运行python(简单版) 一、前提准备1.centOS72.挂载yum源[http://t.csdn.cn/Isf0i](http://t.csdn.cn/Isf0i) 二、安装python3三、运行程序 一、前提准备 1.centOS7 2.挂载yum源http://t.csdn.cn/Isf0i 在终端进行安装python3 二、安装python3 …

linux怎么运行python脚本?

linux运行python脚本的方法: 1、命令行执行: 建立一个test.py文档,在其中书写python代码。之后,在命令行执行:python test.py 说明:其中python可以写成python的绝对路径。使用which python进行查询。 注…