图像噪声与去噪

article/2025/9/30 3:49:04

 

 

图像的空域噪声以及二维降噪算法介绍

 

1 图像噪声的成因

  图像在生成和传输过程中常常因受到各种噪声的干扰和影响而是图像降质,这对后续图像的处理和图像视觉效应将产生不利影响。噪声种类很多,比如:电噪声,机械噪声,信道噪声和其他噪声。因此,为了抑制噪声,改善图像质量,便于更高层次的处理,必须对图像进行去噪预处理。

2 图像噪声的特征

  图像噪声使得图像模糊,甚至淹没图像特征,给分析带来困难。

  图像噪声一般具有以下特点:

  (1) 噪声在图像中的分布和大小不规则,即具有随机性。

  (2) 噪声与图像之间一般具有相关性。例如,摄像机的信号和噪声相关,黑暗部分噪声大,明亮部分噪声小。又如,数字图像中的量化噪声与图像相位相关,图像内容

           接近平坦时,量化噪声呈现伪轮廓,但图像中的随机噪声会因为颤噪效应反而使量化噪声变得不很明显。

      (3) 噪声具有叠加性。在串联图像传输系统中,各部分窜入噪声若是同类噪声可以进行功率相加,依次信噪比要下降。

3 图像噪声的分类

3.1加性噪声和乘性噪声

      按噪声和信号之间的关系,图像噪声可分为加性噪声和乘性噪声。为了分析处理方便,往往将乘性噪声近似认为是加性噪声,而且总是假定信号和噪声是互相独立的。

假定信号为S(t),噪声为n(t),如果混合叠加波形是S(t)+n(t)的形式,则称其为加性噪声。加性嗓声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声等。

      如果叠加波形为S(t)[1+n(t)]的形式,则称其为乘性噪声。乘性噪声则与信号强度有关,往往随图像信号的变化而变化,如飞点扫描图像中的嗓声、电视扫描光栅、胶片颗粒造成等。

3.2 外部噪声和内部噪声

      按照产生原因,图像噪声可分为外部噪声和内部噪声。外部噪声,即指系统外部干扰以电磁波或经电源串进系统内部而引起的噪声。如外部电气设备产生的电磁波干扰、天体放电产生的脉冲干扰等。由系统电气设备内部引起的噪声为内部噪声,如内部电路的相互干扰。内部噪声一般又可分为以下四种:(1)由光和电的基本性质所引起的噪声。(2)电器的机械运动产生的噪声。(3)器材材料本身引起的噪声。(4)系统内部设备电路所引起的噪声。

3.3 平稳噪声非平稳噪声

      按照统计特性,图像噪声可分为平稳噪声和非平稳噪声。统计特性不随时间变化的噪声称为平稳噪声。统计特性随时间变化的噪声称为非平稳噪声。

3.4其它几类噪声

       量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。

      “椒盐”噪声:此类嗓声如图像切割引起的即黑图像上的白点,白图像上的黑点噪声,在变换域引入的误差,使图像反变换后造成的变换噪声等。

      按噪声幅度随时间分布形状来定义,如其幅度分布是按高斯分布的就称其为高斯噪声,而按雷利分布的就称其为雷利噪声。

      按噪声频谱形状来命,如频谱均匀分布的噪声称为白噪声;频谱与频率成反比的称为1/f 噪声;而与频率平方成正比的称为三角噪声等等。

      根据经常影响图像质量的噪声源又可分电子噪声和光电子噪声。电子噪声:在阻性器件中由于电子随机热运动而造成的电子噪声是三种模型中最简单的。光电子噪声:

光电子噪声是由光的统计本质和图像传感器中光电转换过程引起的。

4 图像的噪声模型

      实际获得的图像含有的噪声,根据不同分类可将噪声进行不同的分类。从噪声的概率分布情况来看,可分为高斯噪声、瑞利噪声、伽马噪声、指数噪声和均匀噪声。

4.1 高斯噪声

      由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。事实上,这种易处理性非常方便,使高斯模型经常用于临界情况下 。

  高斯随机变量z的PDF由下式给出:

                                                                      

     其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。当z服从式(1.3.1)的分布时候,其值有70%落在[(μ-σ),(μ+σ)]内,且有95%落在[(μ-2σ),( μ+2σ)]范围内。 

4.2 瑞利噪声

     瑞利噪声的概率密度函数由下式给出:

                                                                    

     概率密度的均值和方差由下式给出:

                                                                               

4.3 伽马(爱尔兰)噪声

     伽马噪声的PDF由下式给出:

                                                                   

      其中,a>0,b为正整数且“!”表示阶乘。其密度的均值和方差由下式给出:

                                                                                 

      尽管经常被用来表示伽马密度,严格地说,只有当分母为伽马函数Г(b)时才是正确的。当分母如表达式所示时,该密度近似称为爱尔兰密度。

4.4 指数分布噪声

      指数噪声的PDF可由下式给出:

                                                                    

      其中a>0。概率密度函数的期望值和方差是:

                                                                              

4.5 均匀噪声分布

     均匀噪声分布的概率密度,由下式给出:

                                                                

    概率密度函数的期望值和方差可由下式给出:

                                                                             

1.3.6 脉冲噪声(椒盐噪声)

  (双极)脉冲噪声的PDF可由下式给出:

                                                              

  如果b>a,灰度值b在图像中将显示为一个亮点,相反,a的值将显示为一个暗点。若Pa或Pb为零,则脉冲噪声称为单极脉冲。如果Pa和Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。由于这个原因,双极脉冲噪声也称为椒盐噪声。同时,它们有时也称为散粒和尖峰噪声。

  噪声脉冲可以是正的,也可以是负的。标定通常是图像数字化过程的一部分。因为脉冲干扰通常与图像信号的强度相比较大,因此,在一幅图像中,脉冲噪声总是数字化为最大值(纯黑或纯白)。这样,通常假设a,b是饱和值,从某种意义上看,在数字化图像中,它们等于所允许的最大值和最小值。由于这一结果,负脉冲以一个黑点(胡椒点)出现在图像中。由于相同的原因,正脉冲以白点(盐点)出现在图像中。对于一个8位图像,这意味着a=0(黑)。b=255(白)。

5 常见图像去噪算法简介

  图像噪声在数字图像处理技术中的重要性越来越明显,如高放大倍数航片的判读,X射线图像系统中的噪声去除等已经成为不可缺少的技术步骤。图像去噪算法可以分为以下几类:

  (1)空间域滤波

   空域滤波是在原图像上直接进行数据运算,对像素的灰度值进行处理。常见的空间域图像去噪算法有邻域平均法、中值滤波、低通滤波等。

  (2)变换域滤波

  图像变换域去噪方法是对图像进行某种变换,将图像从空间域转换到变换域,再对变换域中的变换系数进行处理,再进行反变换将图像从变换域转换到空间域来达到去除图像嗓声的目的。将图像从空间域转换到变换域的变换方法很多,如傅立叶变换、沃尔什-哈达玛变换、余弦变换、K-L变换以及小波变换等。而傅立叶变换和小波变换则是常见的用于图像去噪的变换方法。

  (3)偏微分方程

  偏微分方程是近年来兴起的一种图像处理方法,主要针对低层图像处理并取得了很好的效果。偏微分方程具有各向异性的特点,应用在图像去噪中,可以在去除噪声的同时,很好的保持边缘。偏微分方程的应用主要的一类是一种是基本的迭代格式,通过随时间变化的更新,使得图像向所要得到的效果逐渐逼近,以及对其改进后的后续工作。该方法在确定扩散系数时有很大的选择空间,在前向扩散的同时具有后向扩散的功能,所以,具有平滑图像和将边缘尖锐化的能力[5]。偏微分方程在低噪声密度的图像处理中取得了较好的效果,但是在处理高噪声密度图像时去噪效果不好,而且处理时间明显高出许多。

  (4)变分法

  另一种利用数学进行图像去噪方法是基于变分法的思想,确定图像的能量函数,通过对能量函数的最小化工作,使得图像达到平滑状态,现在得到广泛应用的全变分TV模型就是这一类。这类方法的关键是找到合适的能量方程,保证演化的稳定性,获得理想的结果。

  (5)形态学噪声滤除器

  将开与闭结合可用来滤除噪声,首先对有噪声图像进行开运算,可选择结构要素矩阵比噪声尺寸大,因而开运算的结果是将背景噪声去除;再对前一步得到的图像进行闭运算,将图像上的噪声去掉。据此可知,此方法适用的图像类型是图像中的对象尺寸都比较大,且没有微小细节,对这类图像除噪效果会较好。

 

几种降噪算法总结

 

顺便补充下:

 

在图像处理中,我们会频繁用到这三个概念,这里整理了网上优秀的博客。供大家交流学习。

一、什么是时域

    时域是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。

二、什么是频域

    频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。

三、什么是空间域

   空间域又称图像空间(image space)。由图像像元组成的空间。在图像空间中以长度(距离)为自变量直接对像元值进行处理称为空间域处理。

以时间作为变量所进行的研究就是时域

以频率作为变量所进行的研究就是频域

以空间坐标作为变量进行的研究就是空间域

以波数作为变量所进行的研究称为波数域

 

时域和频域

最近在上数字图像处理,时域和频域的概念我没有直观的概念,搜索一下,归纳如下:

 

1.最简单的解释

频域就是频率域,

平常我们用的是时域,是和时间有关的,

这里只和频率有关,是时间域的倒数。时域中,X轴是时间,

频域中是频率。频域就是分析它的频率特性!

2. 图像处理中:

  空间域,频域,变换域,压缩域等概念!

只是说要将图像变换到另一种域中,然后有利于进行处理和计算

比如说:图像经过一定的变换(Fourier变换,离散yuxua DCT 变换),图像的频谱函数统计特性:图像的大部分能量集中在低,中频,高频部分的分量很弱,仅仅体现了图像的某些细节。

2.离散傅立叶变换

一般有离散傅立叶变换和其逆变换

3.DCT变换

示波器用来看时域内容,频普仪用来看频域内容!!!

时域是信号在时间轴随时间变化的总体概括。

频域是把时域波形的表达式做傅立叶变化得到复频域的表达式,所画出的波形就是频谱图。是描述频率变化和幅度变化的关系。

时域做频谱分析变换到频域;空间域做频谱分析变换到波数域;

信号通过系统,在时域中表现为卷积,而在频域中表现为相乘。

无论是傅立叶变换还是小波变换,其实质都是一样的,既:将信号在时间域和频率域之间相互转换,从看似复杂的数据中找出一些直观的信息,再对它进行分 析。由于信号往往在频域比有在时域更加简单和直观的特性,所以,大部分信号分析的工作是在频域中进行的。音乐——其实就是时/频分析的一个极好例子,乐谱 就是音乐在频域的信号分布,而音乐就是将乐谱变换到时域之后的函数。从音乐到乐谱,是一次傅立叶或小波变换;从乐谱到音乐,就是一次傅立叶或小波逆变换。

 时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。

很简单时域分析的函数是参数是t,也就是y=f(t),频域分析时,参数是w,也就是y=F(w)
两者之间可以互相转化。时域函数通过傅立叶或者拉普拉斯变换就变成了频域函数。

 

释文: 以空间频率(即波数)为自变量描述图像的特征,可以将一幅图像像元值在空间上的变化分解为

具有不同振幅、空间频率和相位的简振函数的线性叠加,图像中各种空问频率成分的组成和分布称为

空间频谱。

 

这种对图像的空间频率特征进行分解、处理和分析称为空间频率域处理或波数域处理。

和时间域与频率域可互相转换相似,空间域与空间频率域也可互相转换。

在空间频率域中可以引用已经很成熟的频率域技术,处理的一般步骤为:

①对图像施行二维离散傅立叶变换或小波变换,将图像由图像空间转换到频域空间。

②在空间频率域中对图像的频谱作分析处理,以改变图像的频率特征。

即设计不同的数字滤波器,对图像的频谱进行滤波。频率域处理主要用于与图像空间频率有关的处理中。

如图像恢复、图像重建、辐射变换、边缘增强、图像锐化、图像平滑、噪声压制、频谱分析、纹理分析

等处理和分析中。

须注意,空间频率(波数)的单位为米 -l或(毫米)-1等。

 


http://chatgpt.dhexx.cn/article/3j8jYYmS.shtml

相关文章

图像噪声处理

一、为图像添加噪声 为图像添加噪声可以起到数据增强的作用 对训练数据添加适量噪声,可以使训练后的模型更加鲁棒,对模型的性能提升有一定的帮助。 两种常用噪声:椒盐噪声和高斯噪声 import cv2 import numpy as np import random #添加椒…

图像噪声简介

一、什么是图像噪声? 噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。 二、噪声来源—两个方面…

VS找不到标识符

情况一: 忘记加:: 情况二: 没有包含相应的头文件 #include “xxx”** 情况三: 调用函数没有声明或定义

VS C++程序报错:找不到标识符

报错如下: 原因: cpp编译时是顺序编译的,我在一个函数中嵌套使用了上面报错的InsertNextNode()函数,而把InsertNextNode()函数的定义放在了上一个函数的后面,所以报错找…

c++编译错误error C3861: “xxxx”: 找不到标识符

错误描述 在导入自定义的头文件时&#xff0c;报C3861 “_ReturnAddress”: 找不到标识符错误&#xff0c;错误信息如下 解决办法 在自定义的头文件前面导入&#xff0c;指向的头文件即可 include ""//自定义头文件 include <ppltasks.h> 参考&#xff…

找不到标识符问题

复习动态数组时&#xff0c;出现了找不到标识符的问题&#xff0c;原因是cpp编译时是“顺序编译”的&#xff0c;主函数调用vector_2()函数的时&#xff0c;vector_2()在它所调用的函数printfV()的定义之前&#xff0c;因此找不到标识符。 将两函数调换顺序即可编译通过 &…

编写C语言出现“找不到标识符”

用C语言编写代码的时候虽然是从main函数开始的。但是其中有一个编译的过程。这个过程就是顺序编译。例如函数2调用了函数1。 #include<iostream> using namespace std; void print2() {cout << "调用第一个函数";print1();//调用第一个函数 } void prin…

关于error C3861: “xxxx”: 找不到标识符的处理方法

关于 error c3861:“XXXX”&#xff1a;找不到标识符的见解 在写代码是编译器提醒了找不到标识符的错误下来学习了一下,总结了一下希望对大家有帮助,先来认识一下什么是标识符&#xff08;如果知道就当巩固复习&#xff09;。 标识符:标识符&#xff08;identifier&#xff09…

error C3861: “AT_CHECK”: 找不到标识符

今天跑别人代码时遇到这个问题 会提示我 error C3861: “AT_CHECK”: 找不到标识符 我搜了一下发现在pytorch1.5版本之后AT_CHECK标识符已经不再使用了 只需要把 AT_CHECK 换成 TORCH_CHECK 即可

VS 2022 :C3861 “Covers”: 找不到标识符

严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C3861 “Covers”: 找不到标识符 CampusGuide 没有声明函数是无法调用的哦&#xff01; 还有还有 如果你的多行注释不是成对出现&#xff0c;它就会这样提示&#xff1a; 错误(活动) E00…

成功解决error C3861: “printf”: 找不到标识符

问题描述&#xff1a; 错误如下&#xff1a;error C3861: “printf”: 找不到标识符。 解决方法 提示找不到标识符“printf”&#xff0c;猜想这可能是由于编译器没能包含进头文件stdio.h造成的&#xff0c;然后我就在代码上面重新写了一行#include<stdio.h>,之后再运行…

“pcl_isfinite”: 找不到标识符

错误信息是&#xff1a;“pcl_isfinite”: 找不到标识符 我搜了&#xff0c;好多网站&#xff0c;搜了好多包&#xff0c;都没有这个“pcl_isfinite”的定义。后来看别人的代码找到了。。。 在我们自己的代码中&#xff1a;添加一行&#xff1a; # define pcl_isfinite(x) s…

VS中使用c++函数显示找不到标识符

VS中使用c函数显示找不到标识符 解决办法&#xff1a;把函数定义在main函数前原因&#xff1a;这个CPP并没有面向对象的结构。所以进行编译时是“顺序编译”的&#xff0c;而main函数的定义又在A的定义之前、自然找不到标识符了 如图使用函数时&#xff0c;出现代号为C3801的错…

VS找不到标识符问题

问题描述&#xff1a; 在我的一个screen.cpp文件中&#xff0c;我调用在这个文件里面定义的一个函数 并且在我的这个cpp文件中&#xff0c;我也明确定义函数 但是却爆出来的错误&#xff0c;注意这个错误不是没有定义 如果我把函数名改为&#xff1a;load_buyer_. 报的错误就…

地理加权回归GWR4.0软件下载与使用

1、GWR4.0软件下载链接&#xff1a;https://download.csdn.net/download/xiaodongfly/7027693 &#xff08;GWR4.0官方下载网址&#xff1a;https://gwrtools.github.io/&#xff0c;但是我打不开&#xff0c;所以从上面那个链接下载的软件&#xff09; 2、软件的安装 双击安…

spgwr | R语言与地理加权回归(Ⅰ-1):线性地理加权回归

地理加权回归&#xff08;Geographically Weighted Regression, GWR&#xff09;经过多年发展&#xff0c;已经具备了多种形式&#xff0c;在R语言中也对应着多个工具包&#xff0c;其中spgwr是一个开发较早、比较经典的工具包&#xff0c;功能也相对基础。 library(spgwr)在该…

地理加权归回模型 (GWR) 参数估计

作者&#xff1a;陈凤 (西安交通大学)   Stata连享会   计量专题 || 精品课程 || 简书推文 || 公众号合集 连享会计量方法专题…… 文章目录 连享会计量方法专题…… 1. 地理加权回归模型简介2. 地理加权回归模型的参数估计方法连享会计量方法专题…… 3. 常用的核函数3.1. G…

基于R语言经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析等空间异质性数据分析

目录 专题一 地理加权回归下的描述性统计学 专题二 地理加权主成分分析 专题三 地理加权回归 专题四 高级回归与回归之外 更多推荐 以地理加权回归为基础的一系列方法&#xff1a;经典地理加权回归&#xff0c;半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析…

多尺度地理加权回归(MGWR)软件官网下载

这两天要做MGWR实证&#xff0c;看到有人拿别人免费的东西来卖钱....发一下下载地址方便后来者 SPARC - Multiscale Geographically Weighted Regression | School of Geographical Sciences & Urban Planning (asu.edu)

Python空间分析| 03 利用Python进行地理加权回归(GWR)

地理加权回归&#xff08;GWR&#xff09; GWR本质上是一种局部加权回归模型&#xff0c;GWR根据每个空间对象的周围信息&#xff0c;逐个对象建立起回归方程&#xff0c;即每个对象都有自己的回归方程&#xff0c;可用于归因或者对未来的预测。GWR最大的优势是考虑了空间对象…