【路径规划】局部路径规划算法——人工势场法(含python实现 | c++实现)

article/2025/8/23 17:20:10

文章目录

  • 参考资料
  • 1. 算法简介
  • 2. 算法精讲
    • 2.1 引力势场
    • 2.2 斥力势场
    • 2.3 合力势场
  • 3. 引力斥力推导计算
  • 4. 算法缺陷与改进
    • 4.1 目标不可达的问题
    • 4.2 陷入局部最优的问题
    • 4.3 解决方案
      • 4.3.1 改进障碍物斥力势场函数
      • 4.3.2 道路边界斥力势场
  • 5. python实现
  • 6. c++实现

参考资料

  • 路径规划与轨迹跟踪系列算法
  • 基于改进型人工势场法的车辆避障路径规划研究
  • 基于改进人工势场法的车辆避障路径规划研究

1. 算法简介

  • 1986 年 Khatib 首先提出人工势场法,并将其应用在机器人避障领域, 而现代汽车可以看作是一个高速行驶的机器人,所以该方法也可应用于汽车的避障路径规划领域。
  • 人工势场法的基本思想是在障碍物周围构建障碍物斥力势场,在目标点周围构建引力势场,类似于物理学中的电磁场

  • 被控对象在这两种势场组成的复合场中受到斥力作用和引力作用,斥力和引力的合力指引着被控对象的运动,搜索无碰的避障路径。

  • 更直观而言, 势场法是将障碍物比作是平原上具有高势能值的山峰, 而目标点则是具有低势能值的低谷。

2. 算法精讲

2.1 引力势场

引力势场主要与汽车和目标点间的距离有关, 距离越大, 汽车所受的势能值就越大; 距离越小, 汽车所受的势能值则越小, 所以引力势场的函数为:
U a t t ( q ) = 1 2 η ρ 2 ( q , q g ) (1) \tag{1} U_{a t t}(q)=\frac{1}{2} \eta \rho^{2}\left(q, q_{g}\right) Uatt(q)=21ηρ2(q,qg)(1)
其中 η \eta η 为正比例增益系数, ρ ( q , q g ) \rho\left(q, q_{g}\right) ρ(q,qg) 为一个矢量, 表示汽车的位置 q q q 和目标点位置 q g q_{g} qg 之间的欧式距离 ∣ q − q g ∣ \left|q-q_{g}\right| qqg, 矢量方向是从汽车的位置指向目标点位置。

相应的引力 F att  ( q ) F_{\text {att }}(q) Fatt (q) 为引力场的负梯度,代表引力势场函数 U a t t ( q ) U_{att}(q) Uatt(q)的变化最快方向。
F a t t ( q ) = − ∇ U a t t ( q ) = − η ρ ( q , q g ) (2) \tag{2} F_{a t t}(q)=-\nabla U_{a t t}(q)=-\eta \rho\left(q, q_{g}\right) Fatt(q)=Uatt(q)=ηρ(q,qg)(2)

2.2 斥力势场

  • 决定障碍物斥力势场的因素是汽车与障碍物间的距离, 当汽车未进入障碍物的影响范围时, 其受到的势能值为零; 在汽车进入障碍物的影响范围后, 两者之间的距离越大, 汽车受到的势能值就越小, 距离越小, 汽车受到的势能值就越大。

  • 斥力势场的势场函数为:
    U r e q ( q ) = { 1 2 k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) 2 , 0 ≤ ρ ( q , q 0 ) ≤ ρ 0 0 , ρ ( q , q 0 ) ≥ ρ 0 (3) \tag{3} U_{r e q}(q)=\left\{\begin{array}{lc} \frac{1}{2} k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right)^{2} ,& 0 \leq \rho\left(q, q_{0}\right) \leq \rho_{0} \\ 0 ,& \rho\left(q, q_{0}\right) \geq \rho_{0} \end{array}\right. Ureq(q)={21k(ρ(q,q0)1ρ01)2,0,0ρ(q,q0)ρ0ρ(q,q0)ρ0(3)

    其中 k k k 为正比例系数, ρ ( q , q 0 ) \rho\left(q, q_{0}\right) ρ(q,q0) 为一矢量, 方向为从障碍物指向汽车, 大小为汽车与障碍物间的欧式距离 ∣ q − q 0 ∣ , ρ 0 \left|q-q_{0}\right|, \rho_{0} qq0,ρ0 为一常数, 表示障碍物对汽车产生作用的最大影响范围。

    由公式(3)可知,斥力势场不同于引力势场,智能汽车不总是受到障碍对它的斥力作用。当汽车与障碍物之间的相对距离超过 ρ 0 \rho_{0} ρ0时,就判定此障碍对汽车不再有影响作用。当汽车进入障碍物的影响范围之后,即汽车与障碍的相对距离小于 ρ 0 \rho_{0} ρ0时,汽车开始受到障碍物的斥力影响。汽车与障碍物的相对距离越小,斥力影响越大,自身势能升高。汽车与障碍物的相对距离越大,斥力影响越小,自身势能降低。

  • 相应的斥力为斥力势场的负梯度作用力:
    F r e q ( q ) = { k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) 1 ρ 2 ( q , q 0 ) , 0 ≤ ρ ( q , q 0 ) ≤ ρ 0 0 , ρ ( q , q 0 ) ≥ ρ 0 (4) \tag{4} F_{r e q}(q)= \begin{cases}k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right) \frac{1}{\rho^{2}\left(q, q_{0}\right)},& 0 \leq \rho\left(q, q_{0}\right) \leq \rho_{0} \\ 0 ,& \rho\left(q, q_{0}\right) \geq \rho_{0}\end{cases} Freq(q)={k(ρ(q,q0)1ρ01)ρ2(q,q0)1,0,0ρ(q,q0)ρ0ρ(q,q0)ρ0(4)

2.3 合力势场

根据上述定义的引力场函数和斥力场函数,可以得到整个运行空间的复合场,机器人的合力势场大小为机器人所受的斥力势场和引力势场之和,故合力势场总函数为:
U ( q ) = U a t t ( q ) + U r e q ( q ) (5) \tag{5} U(q)=U_{att}(q)+U_{req}(q) U(q)=Uatt(q)+Ureq(q)(5)
所受合力为
F ( q ) = − ∇ U ( q ) = F a t t ( q ) + F r e q ( q ) (6) \tag{6} F(q) =-\nabla U(q)= F_{a t t}(q)+F_{r e q}(q) F(q)=U(q)=Fatt(q)+Freq(q)(6)

合力的方向决定汽车的行驶朝向,合力的大小决定汽车的行驶加速度。

3. 引力斥力推导计算

不妨设车辆位置为 ( x , y ) (x, y) (x,y),障碍物位置为 ( x g , y g ) (x_g, y_g) (xg,yg)

根据公式(1),引力势场函数为
U a t t ( q ) = 1 2 η ρ 2 ( q , q g ) ⇒ U a t t ( x , y ) = 1 2 η [ ( x − x g ) 2 + ( y − y g ) 2 ] (7) \tag{7} U_{a t t}(q)=\frac{1}{2} \eta \rho^{2}\left(q, q_{g}\right) \Rightarrow U_{a t t}(x, y)=\frac{1}{2} \eta\left[\left(x-x_{g}\right)^{2}+\left(y-y_{g}\right)^{2}\right] Uatt(q)=21ηρ2(q,qg)Uatt(x,y)=21η[(xxg)2+(yyg)2](7)
故引力势场的负梯度有
− grad ⁡ a t t ( x , y ) = − ∇ U a t t ( x , y ) = − U a t t , x ′ ( x , y ) i ⃗ − U a t t , y ′ ( x , y ) j ⃗ = − η ( x − x g ) i ⃗ − η ( y − y g ) j ⃗ = η [ ( x g − x ) i ⃗ + ( y g − y ) j ⃗ ] ⇒ 引 力 大 小 = η ( x − x g ) 2 + ( y g − y ) 2 = η ρ ( q , q g ) (8) \tag{8} \begin{aligned} -\operatorname{grad}_{a t t}(x, y)&=-\nabla U_{a t t}(x, y) \\ &=-U_{a t t, x}^{\prime}(x, y) \vec{i}-U_{a t t, y}^{\prime}(x, y) \vec{j} \\ &=-\eta\left(x-x_{g}\right) \vec{i}-\eta\left(y-y_{g}\right) \vec{j} \\ &=\eta\left[\left(x_{g}-x\right) \vec{i}+\left(y_{g}-y\right) \vec{j}\right] \\ \Rightarrow 引力大小&=\eta \sqrt{\left(x-x_{g}\right)^{2}+\left(y_{g}-y\right)^{2}}=\eta \rho\left(q, q_{g}\right) \end{aligned} gradatt(x,y)=Uatt(x,y)=Uatt,x(x,y)i Uatt,y(x,y)j =η(xxg)i η(yyg)j =η[(xgx)i +(ygy)j ]=η(xxg)2+(ygy)2 =ηρ(q,qg)(8)

同理,斥力势场函数为
U r e q ( q ) = 1 2 k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) 2 ⇒ U r e q ( x , y ) = 1 2 k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] 2 (9) \tag{9} \begin{aligned} U_{r e q}(q)=\frac{1}{2} k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right)^{2} \Rightarrow U_{r e q}(x, y)=\frac{1}{2} k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]^{2} \end{aligned} Ureq(q)=21k(ρ(q,q0)1ρ01)2Ureq(x,y)=21k(xx0)2+(yy0)2 1ρ012(9)
斥力势场的负梯度为
− ∇ U r e q ( x , y ) = − U r e q , x ′ ( x , y ) i ⃗ − U r e q , y ′ ( x , y ) j ⃗ (10) \tag{10} -\nabla U_{r e q}(x, y)=-U_{r e q, x}^{\prime}(x, y) \vec{i}-U_{r e q, y}^{\prime}(x, y) \vec{j} Ureq(x,y)=Ureq,x(x,y)i Ureq,y(x,y)j (10)
将公式(10)各项分别展开:
− U r e q , x ′ ( x , y ) i ⃗ = − k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] ′ i ⃗ = − k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] { − 1 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] − 3 2 ⋅ [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] ′ } i ⃗ = k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] { 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] − 1 2 ( x − x 0 ) } i ⃗ = k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) ⋅ 1 ρ 2 ( q , q 0 ) ⋅ 1 ρ ( q , q 0 ) ⋅ ( x − x 0 ) i ⃗ (11-1) \tag{11-1} \begin{aligned} -U_{r e q, x}^{\prime}(x, y) \vec{i} &=-k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]' \vec{i}\\ &=-k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left\{-\frac{1}{2}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{-\frac{3}{2}} \cdot\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]'\right\} \vec{i}\\ &=k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left\{\frac{1}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{-\frac{1}{2}}\left(x-x_{0}\right)\right\} \vec{i}\\ &=k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right) \cdot \frac{1}{\rho^{2}\left(q, q_{0}\right)} \cdot \frac{1}{\rho\left(q, q_{0}\right)} \cdot\left(x-x_{0}\right) \vec{i}\\ \end{aligned} Ureq,x(x,y)i =k(xx0)2+(yy0)2 1ρ01(xx0)2+(yy0)2 1ρ01i =k(xx0)2+(yy0)2 1ρ01{21[(xx0)2+(yy0)2]23[(xx0)2+(yy0)2]}i =k(xx0)2+(yy0)2 1ρ01{(xx0)2+(yy0)21[(xx0)2+(yy0)2]21(xx0)}i =k(ρ(q,q0)1ρ01)ρ2(q,q0)1ρ(q,q0)1(xx0)i (11-1)
− U r e q , y ′ ( x , y ) i ⃗ = − k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] ′ j ⃗ = − k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] { − 1 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] − 3 2 ⋅ [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] ′ } j ⃗ = k [ 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 − 1 ρ 0 ] { 1 ( x − x 0 ) 2 + ( y − y 0 ) 2 [ ( x − x 0 ) 2 + ( y − y 0 ) 2 ] − 1 2 ( y − y 0 ) } j ⃗ = k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) ⋅ 1 ρ 2 ( q , q 0 ) ⋅ 1 ρ ( q , q 0 ) ⋅ ( y − y 0 ) j ⃗ (11-2) \tag{11-2} \begin{aligned} -U_{r e q, y}^{\prime}(x, y) \vec{i} &=-k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]' \vec{j}\\ &=-k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left\{-\frac{1}{2}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{-\frac{3}{2}} \cdot\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]'\right\} \vec{j}\\ &=k\left[\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}-\frac{1}{\rho_{0}}\right]\left\{\frac{1}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{-\frac{1}{2}}\left(y-y_{0}\right)\right\} \vec{j}\\ &=k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right) \cdot \frac{1}{\rho^{2}\left(q, q_{0}\right)} \cdot \frac{1}{\rho\left(q, q_{0}\right)} \cdot\left(y-y_{0}\right) \vec{j}\\ \end{aligned} Ureq,y(x,y)i =k(xx0)2+(yy0)2 1ρ01(xx0)2+(yy0)2 1ρ01j =k(xx0)2+(yy0)2 1ρ01{21[(xx0)2+(yy0)2]23[(xx0)2+(yy0)2]}j =k(xx0)2+(yy0)2 1ρ01{(xx0)2+(yy0)21[(xx0)2+(yy0)2]21(yy0)}j =k(ρ(q,q0)1ρ01)ρ2(q,q0)1ρ(q,q0)1(yy0)j (11-2)

化简后得斥力大小为
− ∇ U r e q ( x , y ) = k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) ⋅ 1 ρ 2 ( q , q 0 ) (12) \tag{12} \begin{aligned} -\nabla U_{r e q}(x, y)=k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right) \cdot \frac{1}{\rho^{2}\left(q, q_{0}\right)} \end{aligned} Ureq(x,y)=k(ρ(q,q0)1ρ01)ρ2(q,q0)1(12)

4. 算法缺陷与改进

4.1 目标不可达的问题

由于障碍物与目标点距离太近,当汽车到达目标点时,根据势场函数可知,目标点的引力降为零,而障碍物的斥力不为零,此时汽车虽到达目标点, 但在斥力场的作用下不能停下来,从而导致目标不可达的问题。

4.2 陷入局部最优的问题

车辆在某个位置时,无法向前搜索避障路径。

出现局部最优主要有两种情况:

  • 如下图,汽车受到的障碍物的斥力和目标点的引力之间的夹角近似为180°,几乎在同一条直线上,就会出现汽车在障碍物前陷入局部最优的问题。
  • 如果若干个障碍物的合斥力与目标点的引力大小相等、方向相反,则合力为0,智能汽车自身判断到达势能极小值的位置,但没有到达期望的目标点位置。由于合力为零,汽车就会陷在势能极小的位置,无法继续前进和转向,以致无法到达期望的目标点。

4.3 解决方案

解决方案可参考资料2和资料3,这两篇论文均给出了不一样的解决方案,但思路几乎差不多。下面以参考资料2给出的方案进行简单叙述。

4.3.1 改进障碍物斥力势场函数

通过改进障碍物斥力势场函数来解决局部最优和目标不可达的问题;在传统人工势场法的障碍物斥力场模型中加入调节因子 ρ g n \rho_{g}^{n} ρgn, 使汽车只有到达目标点时, 斥力和引力才同时减小到零, 从而使局部最优和目标不可达的问题得到解决。

改进后的斥力场函数为:
U req  ( q ) = { 1 2 k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) 2 ρ g n , 0 ≤ ρ ( q , q 0 ) ≤ ρ 0 0 , ρ ( q , q 0 ) > ρ 0 (13) \tag{13} U_{\text {req }}(q)= \begin{cases}\frac{1}{2} k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right)^{2} \rho_{g}^{n}, & 0 \leq \rho\left(q, q_{0}\right) \leq \rho_{0} \\ 0, & \rho\left(q, q_{0}\right) > \rho_{0}\end{cases} Ureq (q)=21k(ρ(q,q0)1ρ01)2ρgn,0,0ρ(q,q0)ρ0ρ(q,q0)>ρ0(13)
ρ g n \rho_{g}^{n} ρgn 为汽车与目标点的距离,式中 n n n为可选的正常数。

{ F r e q = F r e q 1 + F r e q 2 F r e q 1 = k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) ρ g n ρ 2 ( q , q 0 ) F r e q 2 = n 2 k ( 1 ρ ( q , q 0 ) − 1 ρ 0 ) 2 ρ g n − 1 (14) \tag{14} \left\{\begin{array}{l} F_{req}=F_{req1 }+F_{req2 }\\ \\ F_{req1 }=k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right) \frac{\rho_{g}^{n}}{\rho^{2}\left(q, q_{0}\right)} \\ F_{req2 }=\frac{n}{2} k\left(\frac{1}{\rho\left(q, q_{0}\right)}-\frac{1}{\rho_{0}}\right)^{2} \rho_{g}^{n-1} \end{array}\right. Freq=Freq1+Freq2Freq1=k(ρ(q,q0)1ρ01)ρ2(q,q0)ρgnFreq2=2nk(ρ(q,q0)1ρ01)2ρgn1(14)

F r e q 1 F_{req1 } Freq1的方向为障碍物指向车辆; F r e q 2 F_{req2} Freq2的方向为车辆指向目标点。

改进的斥力场函数中加入了汽车与目标点间的距离,这样使汽车在驶向目标的过程中,受到的引力和斥力同时在一定程度上减小,且只有在汽车到达目标点时,引力和斥力才同时减小为零,即目标点成为势能值的最小点,从而使局部最优和目标不可达的问题得到解决。

4.3.2 道路边界斥力势场

如图,假设每一条车道宽度为 d d d,有2条车道(故道路宽度为 2 d 2d 2d)。车辆宽度为 w w w,故车辆在每一条车道内允许调整的横向移动范围为 d − w d-w dw

通过建立道路边界斥力势场以限制汽车的行驶区域,并适当考虑车辆速度对斥力场的影响
F req,edge  = { η edge  ⋅ v ⋅ e ( − d 2 − y ) , − d + w / 2 < y ≤ − d / 2 车道1 1 3 η edge  ⋅ y 2 , − d / 2 < y ≤ − w / 2 车道1 − 1 3 η edge  ⋅ y 2 , w / 2 < y ≤ d / 2 车道2 η edge  ⋅ v ⋅ e ( y − d 2 ) , d / 2 < y ≤ d − w / 2 车道2 (15) \tag{15} F_{\text {req,edge }}= \begin{cases}\eta_{\text {edge }} \cdot v \cdot e^{\left(\frac{-d}{2}-y\right)}, & -d+w / 2<y \leq -d / 2 \text{ \quad \quad车道1} \\ \frac{1}{3} \eta_{\text {edge }} \cdot y^{2}, & -d / 2<y\leq -w / 2 \text{ \quad \quad车道1} \\ -\frac{1}{3} \eta_{\text {edge }} \cdot y^{2}, & w / 2<y\leq d / 2 \text{ \quad \quad车道2} \\ \eta_{\text {edge }} \cdot v \cdot e^{\left(y-\frac{d}{2}\right)}, & d / 2<y\leq d-w / 2\text{ \quad \quad车道2}\end{cases} Freq,edge =ηedge ve(2dy),31ηedge y2,31ηedge y2,ηedge ve(y2d),d+w/2<yd/2 车道1d/2<yw/2 车道1w/2<yd/2 车道2d/2<ydw/2 车道2(15)

式中 η edge  \eta_{\text {edge }} ηedge 是常数, v v v为车辆速度, y y y为车辆横向坐标。.

5. python实现

下面简单实现改进后的人工势场法。

  • 初始化参数设置

    import numpy as np
    import matplotlib.pyplot as plt
    import copy
    from celluloid import Camera  # 保存动图时用,pip install celluloid
    %matplotlib qt5
    ## 初始化车的参数
    d = 3.5  #道路标准宽度W = 1.8  #  汽车宽度L = 4.7  # 车长P0 = np.array([0, - d / 2, 1, 1]) #车辆起点位置,分别代表x,y,vx,vyPg = np.array([99, d / 2, 0, 0]) # 目标位置# 障碍物位置
    Pobs = np.array([[15, 7 / 4, 0, 0],    [30, - 3 / 2, 0, 0],[45, 3 / 2, 0, 0], [60, - 3 / 4, 0, 0], [80, 3/2, 0, 0]])P = np.vstack((Pg,Pobs))  # 将目标位置和障碍物位置合放在一起Eta_att = 5  # 引力的增益系数Eta_rep_ob = 15  # 斥力的增益系数Eta_rep_edge = 50   # 道路边界斥力的增益系数d0 = 20  # 障碍影响的最大距离num = P.shape[0] #障碍与目标总计个数len_step = 0.5 # 步长n=1Num_iter = 300  # 最大循环迭代次数
  • 数据存储变量定义

    
    path = []  # 保存车走过的每个点的坐标
    delta = np.zeros((num,2)) # 保存车辆当前位置与障碍物的方向向量,方向指向车辆;以及保存车辆当前位置与目标点的方向向量,方向指向目标点
    dists = [] # 保存车辆当前位置与障碍物的距离以及车辆当前位置与目标点的距离
    unite_vec = np.zeros((num,2)) #  保存车辆当前位置与障碍物的单位方向向量,方向指向车辆;以及保存车辆当前位置与目标点的单位方向向量,方向指向目标点F_rep_ob = np.zeros((len(Pobs),2))  # 存储每一个障碍到车辆的斥力,带方向
    v=np.linalg.norm(P0[2:4]) # 设车辆速度为常值
    
  • 人工势场法核心代码

    ## ***************初始化结束,开始主体循环******************
    Pi = P0[0:2]  # 当前车辆位置
    # count=0
    for i in range(Num_iter):if ((Pi[0] - Pg[0]) ** 2 + (Pi[1] - Pg[1]) ** 2) ** 0.5 < 1:breakdists=[]path.append(Pi)# print(count)# count+=1#计算车辆当前位置与障碍物的单位方向向量for j in range(len(Pobs)):delta[j]=Pi[0:2] - Pobs[j, 0:2]dists.append(np.linalg.norm(delta[j]))unite_vec[j]=delta[j]/dists[j]#计算车辆当前位置与目标的单位方向向量delta[len(Pobs)]=Pg[0:2] - Pi[0:2]dists.append(np.linalg.norm(delta[len(Pobs)]))unite_vec[len(Pobs)] = delta[len(Pobs)]/dists[len(Pobs)]## 计算引力F_att = Eta_att*dists[len(Pobs)]*unite_vec[len(Pobs)]## 计算斥力# 在原斥力势场函数增加目标调节因子(即车辆至目标距离),以使车辆到达目标点后斥力也为0for j in  range(len(Pobs)):if dists[j] >= d0:F_rep_ob[j] = np.array([0, 0])else:# 障碍物的斥力1,方向由障碍物指向车辆F_rep_ob1_abs = Eta_rep_ob * (1 / dists[j] - 1 / d0) * (dists[len(Pobs)])**n / dists[j] ** 2  # 斥力大小F_rep_ob1 = F_rep_ob1_abs*unite_vec[j]  # 斥力向量# 障碍物的斥力2,方向由车辆指向目标点F_rep_ob2_abs = n/2 * Eta_rep_ob * (1 / dists[j] - 1 / d0) **2 *(dists[len(Pobs)])**(n-1) # 斥力大小F_rep_ob2 = F_rep_ob2_abs * unite_vec[len(Pobs)]  # 斥力向量# 改进后的障碍物合斥力计算F_rep_ob[j] = F_rep_ob1 + F_rep_ob2# 增加道路边界斥力势场,根据车辆当前位置,选择对应的斥力函数if Pi[1] > - d + W / 2 and Pi[1] <= - d / 2:F_rep_edge = [0, Eta_rep_edge * v * np.exp(-d / 2 - Pi[1])]  # 下道路边界区域斥力势场,方向指向y轴正向elif Pi[1] > - d / 2 and Pi[1] <= - W / 2:F_rep_edge = np.array([0, 1 / 3 * Eta_rep_edge * Pi[1] ** 2])elif Pi[1] > W / 2 and Pi[1] <= d / 2:F_rep_edge = np.array([0, - 1 / 3 * Eta_rep_edge * Pi[1] ** 2])elif Pi[1] > d / 2 and Pi[1] <= d - W / 2:F_rep_edge = np.array([0, Eta_rep_edge * v * (np.exp(Pi[1] - d / 2))])## 计算合力和方向F_rep = np.sum(F_rep_ob, axis=0)+F_rep_edgeF_sum = F_att+F_repUnitVec_Fsum = 1 / np.linalg.norm(F_sum) * F_sum#计算车的下一步位置Pi = copy.deepcopy(Pi+ len_step * UnitVec_Fsum)# Pi[0:2] = Pi[0:2] + len_step * UnitVec_Fsum# print(Pi)path.append(Pg[0:2]) # 最后把目标点也添加进路径中
    path=np.array(path) # 转为numpy
  • 画图

    ## 画图
    fig=plt.figure(1)
    # plt.ylim(-4, 4)
    plt.axis([-10,100,-15,15])
    camera = Camera(fig)
    len_line = 100
    # 画灰色路面图
    GreyZone = np.array([[- 5, - d - 0.5], [- 5, d + 0.5],[len_line, d + 0.5], [len_line, - d - 0.5]])
    for i in range(len(path)):plt.fill(GreyZone[:, 0], GreyZone[:, 1], 'gray')plt.fill(np.array([P0[0], P0[0], P0[0] - L, P0[0] - L]), np.array([- d /2 - W / 2, - d / 2 + W / 2, - d / 2 + W / 2, - d / 2 - W / 2]), 'b')# 画分界线plt.plot(np.array([- 5, len_line]), np.array([0, 0]), 'w--')plt.plot(np.array([- 5, len_line]), np.array([d, d]), 'w')plt.plot(np.array([- 5, len_line]), np.array([- d, - d]), 'w')# 设置坐标轴显示范围# plt.axis('equal')# plt.gca().set_aspect('equal')# 绘制路径plt.plot(Pobs[:,0],Pobs[:,1], 'ro') #障碍物位置plt.plot(Pg[0],Pg[1], 'gv')  # 目标位置plt.plot(P0[0],P0[1], 'bs')  # 起点位置# plt.cla()plt.plot(path[0:i,0],path[0:i,1], 'k')  # 路径点plt.pause(0.001)
    #      camera.snap()
    # animation = camera.animate()
    # animation.save('trajectory.gif')

效果如下:

代码仓库请移步github

6. c++实现

由于在自动驾驶中算法实现一般使用C++,所以我也使用C++实现了相关功能,代码结构相比python代码封装得更好一些,更加清晰,这边就不再做相关代码解释了。完整代码详见另一个github仓库。


http://chatgpt.dhexx.cn/article/3j3eZOC1.shtml

相关文章

人工势场法路径规划算法(APF)

本文主要对人工势场法路径规划算法进行介绍&#xff0c;主要涉及人工势场法的简介、引力和斥力模型及其推导过程、人工势场法的缺陷及改进思路、人工势场法的Python与MATLAB开源源码等方面 一、人工势场法简介 人工势场法是由Khatib于1985年在论文《Real-Time Obstacle Avoidan…

美团笔试题之查找幸运星

美团笔试题之查找幸运星 题目其实很简单&#xff0c;特别简单&#xff0c;当时看一眼题目我心中就有思路了&#xff0c;问题就是我卡在了如何循环输入上了&#xff0c;简直是不可思议&#xff0c; 当时我想复杂了&#xff0c;现在看来如此简单的问题我卡了这么久&#xff0c;…

美团笔试题解2022-3-12号

第一题 签到 题目大意 n组数据&#xff0c;判断每组是否可以被11整除或者还有两个数位1 两个条件满足其一输出yes 否则输出no 第二题 双指针 题目大意 输入一个序列 只含1 输出连续子序列乘积为正的数目 #include<bits/stdc.h> using namespace std; const int N…

美团笔试题及解析(时间:2022年9月3号)

最新美团笔试题及解析&#xff08;时间&#xff1a;2022年9月3号&#xff09; T1 乒乓球 乒乓球&#xff0c;被称为中国的“国球”&#xff0c;是一种世界流行的球类体育项目。一局比赛的获胜规则如下&#xff1a; 当一方赢得至少11分&#xff0c;并且超过对方2分及以上时&…

春招秋招--忆美团笔试

请看https://mp.weixin.qq.com/s/LKIHHOWAT_nRsD6D9Sma3Q ** **

2023校招美团笔试

这两天状态不是很好&#xff0c;美团笔试的题比较常规&#xff0c;五个编程&#xff0c;没有选择填空&#xff0c;做的一般&#xff0c;A了两道多&#xff0c;脑子感觉因为天天熬夜有点迟钝&#xff0c;最后几个题直接摆烂了。 第一题&#xff1a;送外卖 这道题当时思路出了点…

美团笔试题_20220409

前言 笔试一共五道编程题&#xff08;四一&#xff09;&#xff0c;一为专项编程题&#xff0c;估计不同岗位有题目不一样&#xff0c;使用的是赛码网&#xff0c;允许跳出界面使用自己的IDE。 在此感谢筱羊冰冰提供的部分题目及题解。 题目一&#xff1a;数圈游戏 给定一个…

美团笔试记录

美团笔试 今天下午参加了美团校招的笔试&#xff08;web前端/移动端&#xff09;&#xff0c;题型如下&#xff1a;20道选择题、20道专项选择题、2道编程题、1道论述题。但是我肯定不能说出具体是什么题目&#xff0c;毕竟好像要保护题目的隐私。 选择题 选择题难度有点大&a…

美团2023年春招在线前端笔试题回忆版

提示&#xff1a;题目不一定完全正确&#xff0c;只能说给大家参考会考察哪些知识点。 文章目录 前言一、单选&#xff08;计算机基础知识&#xff09;二、专项选择三、编程题1. 某地有一个火车站如下图所示&#xff0c;小红很好奇火车是怎么驶进驶出的&#xff0c;然后每天记录…

关于信息学奥赛一本通(C++版)在线评测系统 1153 绝对素数

信息学奥赛一本通&#xff08;C版&#xff09;在线评测系统网址&#xff1a;信息学奥赛一本通&#xff08;C版&#xff09;在线评测系统 (ssoier.cn) 1153&#xff1a;绝对素数 时间限制: 1000 ms 内存限制: 65536 KB …

信奥一本通1365

1365&#xff1a;FBI树(fbi) 时间限制: 1000 ms 内存限制: 65536 KB 提交数: 6443 通过数: 4366 【题目描述】 我们可以把由“0”和“1”组成的字符串分为三类&#xff1a;全“0”串称为B串&#xff0c;全“1”串称为I串&#xff0c;既含“0”又含“1”的串则称为…

信息学奥赛一本通评测系统P1336

恭喜你看到了这篇题解&#xff0c;他会让你避开很多坑(新手推荐&#xff0c;大佬提些建议嘛) 当然&#xff0c;我不想让大佬像下面这道题中大佬一样。[AHOI2017/HNOI2017]大佬 - 洛谷https://www.luogu.com.cn/problem/P3724 1336&#…

信息学奥赛一本通---1000:入门测试题目

1000&#xff1a;入门测试题目 时间限制: 1000 ms 内存限制: 32768 KB 提交数: 254022 通过数: 152601 【题目描述】 求两个整数的和。 【输入】 一行&#xff0c;两个用空格隔开的整数。 【输出】 两个整数的和。 【输入样例】 2 3 【输出样例】 5 答案如下: #…

信息学奥赛一本通(C++版)在线评测系统网址

信息学奥赛一本通&#xff08;C版&#xff09;在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/index.php

DMSP夜间灯光数据

数据和详细信息参见https://ngdc.noaa.gov/eog/dmsp/dmsp.html&#xff09; 1、美国国防气象卫星计划&#xff08;Defense Meteorological Satellite Program&#xff0c;DMSP&#xff09;由美国空军航天与导弹系统中心运作&#xff0c;卫星运行的线性扫描系统&#xff08;Oper…

大数据应用 | 关于夜间灯光数据在经济学应用的探讨

本文转载自公众号中国经济学教育科研网 原文信息&#xff1a;Gibson, J., Olivia, S., Boe-Gibson, G. and Li, C., 2021. Which night lights data should we use in economics, and where?. Journal of Development Economics, p.102602. 近年来&#xff0c;夜间灯光数据越来…

【数据】2012-2021NPP-VIIRS全球夜间灯光数据下载教程

2011年发射的新一代对地观测卫星Suomi NPP&#xff0c;该卫星搭载的可见光/红外辐射成像仪&#xff08;Visible Infrared Imaging Radiometer Suit&#xff0c;VIIRS&#xff09;能够获取新的夜间灯光遥感影像(Day/Night Band&#xff0c;DNB波段&#xff09;&#xff0c;分辨率…

数据分享|NPP/VIIRS夜间灯光数据(2012-2020逐月)

美国国家海洋大气管理局NOAA下属的国家环境信息中心NCEI下有专门对夜光数据加以处理的小组。他们发布每个月份的合成产品,也发布过2015、2016年的年度全球夜光数据集。 今天分享的夜间灯光数据正是来源于此。 一 数据来源 美国国家海洋大气管理局NOAA下属的国家环境信息中心…

珞珈一号01星(luojia1-01)的夜间灯光影像数据处理流程

珞珈一号01星&#xff08;luojia1-01&#xff09;的夜间灯光影像数据处理流程 书接上回&#xff0c;我们爬取了山东省的珞珈一号夜间灯光影像数据&#xff0c;现在我们来对数据进行预处理&#xff0c;以分区获取区域夜间灯光亮度值。 &#xff08;1&#xff09;加载珞珈一号夜…

基于珞珈一号夜间灯光数据的GDP空间化

ps&#xff1a;普普通通记录贴&#xff0c;地信菜鸡&#xff0c;以防结果被打回来重做然而忘了怎么操作。处理过程参考了很多论文&#xff0c;但操作还是自己来的&#xff0c;也有一点不专业的思考&#xff0c;所以也算原创吧。 记录&#xff1a; 一、数据获得与预处理 1、珞…