OpenCV分水岭算法详解

article/2025/10/16 5:37:35

原理分析

分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线。

下面左边的灰度图,可以描述为右边的地形图,地形的高度是由灰度图的灰度值决定,灰度为0对应地形图的地面,灰度值最大的像素对应地形图的最高点。

灰度图的地形图显示,比如上边的灰度图,显示为:

对灰度图的地形学解释,我们我们考虑三类点:

1. 局部最小值点,该点对应一个盆地的最低点,当我们在盆地里滴一滴水的时候,由于重力作用,水最终会汇聚到该点。注意:可能存在一个最小值面,该平面内的都是最小值点。

2. 盆地的其它位置点,该位置滴的水滴会汇聚到局部最小点。

3. 盆地的边缘点,是该盆地和其它盆地交接点,在该点滴一滴水,会等概率的流向任何一个盆地。

假设我们在盆地的最小值点,打一个洞,然后往盆地里面注水,并阻止两个盆地的水汇集,我们会在两个盆地的水汇集的时刻,在交接的边缘线上(也即分水岭线),建一个坝,来阻止两个盆地的水汇集成一片水域。这样图像就被分成2个像素集,一个是注水盆地像素集,一个是分水岭线像素集。

下面的gif图很好的演示了分水岭算法的效果:

在真实图像中,由于噪声点或者其它干扰因素的存在,使用分水岭算法常常存在过度分割的现象,这是因为很多很小的局部极值点的存在,比如下面的图像,这样的分割效果是毫无用处的。

为了解决过度分割的问题,可以使用基于标记(mark)图像的分水岭算法,就是通过先验知识,来指导分水岭算法,以便获得更好的图像分段效果。通常的mark图像,都是在某个区域定义了一些灰度层级,在这个区域的洪水淹没过程中,水平面都是从定义的高度开始的,这样可以避免一些很小的噪声极值区域的分割。

下面的gif图很好的演示了基于mark的分水岭算法过程:

上面的过度分段图像,我们通过指定mark区域,可以得到很好的分段效果:

距离变换图

分水岭算法流程图

使用分水岭算法进行图像分割


(一)获取灰度图像,二值化图像,进行形态学操作,消除噪点

def watershed_demo(image):blur = cv.pyrMeanShiftFiltering(image,10,100)gray = cv.cvtColor(blur,cv.COLOR_BGR2GRAY)  #获取灰度图像ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)  #将图像转为黑色和白色部分cv.imshow("binary",binary)  #获取二值化图像
#形态学操作,进一步消除图像中噪点
kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3))
#iterations连续两次开操作,消除图像的噪点
mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  

(二)在距离变换前加上一步操作:通过对上面形态学去噪点后的图像,进行膨胀操作,可以得到大部分都是背景的区域(原黑色不是我们需要的部分是背景)

#3次膨胀,可以获取到大部分都是背景的区域
sure_bg = cv.dilate(mb,kernel,iterations=3) 

(三)使用距离变换distanceTransform获取确定的前景色

根据distanceTransform操作的结果,设置一个阈值,使用threshold决定哪些区域是前景,这样得到正确结果的概率很高

#获取距离数据结果
dist = cv.distanceTransform(mb,cv.DIST_L2,5)
#获取前景色
ret, sure_fg = cv.threshold(dist,dist.max()*0.6,255,cv.THRESH_BINARY)  

相关知识补充(重点)

(1)距离变换原理

距离变换的处理图像通常都是二值图像,而二值图像其实就是把图像分为两部分,即背景和物体两部分,物体通常又称为前景目标!

通常我们把前景目标的灰度值设为255,即白色

背景的灰度值设为0,即黑色。

所以定义中的非零像素点即为前景目标,零像素点即为背景。

所以图像中前景目标中的像素点距离背景越远,那么距离就越大,如果我们用这个距离值替换像素值,那么新生成的图像中这个点越亮。

再通过设定合理的阈值对距离变换后的图像进行二值化处理,则可得到去除手指的图像(如下图“bidist”窗口图像所示),手掌重心即为该图像的几何中心。

(2)distanceTransform函数

主要用于计算非零像素到最近零像素点的最短距离。一般用于求解图像的骨骼

# real signature unknown; restored from __doc__
def distanceTransform(src, distanceType, maskSize, dst=None, dstType=None): 

src:输入的图像,一般为二值图像

distanceType:所用的求解距离的类型,有CV_DIST_L1, CV_DIST_L2 , or CV_DIST_C

mask_size:距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。

(3)若是想骨骼显示(对我们的分水岭流程无影响),我们需要对distanceTransform返回的结果进行归一化处理,使用normalize

因为distanceTransform返回的图像数据是浮点数值,要想在浮点数表示的颜色空间中,数值范围必须是0-1.0,所以要将其中的数值进行归一化处理

(重点)在整数表示的颜色空间中,数值范围是0-255,但在浮点数表示的颜色空间中,数值范围是0-1.0,所以要把0-255归一化。

顺便补充:若是不做归一化处理,数值大于1的都会变为1.0处理

    mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  #iterations连续两次开操作cv.imshow("mb", mb)  #这是我们形态学开操作过滤噪点后的图像,暂时可以看做源图像#距离变换dist = cv.distanceTransform(mb,cv.DIST_L2,5)  #这是我们获取的字段距离数值,对应每个像素都有,所以数组结构和图像数组一致cv.imshow("dist",dist)dist_output = cv.normalize(dist,0,1.0,cv.NORM_MINMAX)  #归一化的距离图像数组cv.imshow("distinct-t",dist_output*50)

发现了似乎distanceTransform返回的图像和源图像一样,似乎出错了

原因:因为distanceTransform返回的是浮点型色彩空间,而dist中存放的数距离0值的最小距离,大多是大于1.0的数值,

而上面提到浮点型色彩空间数值范围0-1.0,当数值大于1.0都会被设置为1.0,显示白色,所以和原来的二值化图像一致,

我们要想显示骨骼,必须先进行归一化处理

下面是从二值化图像源,distanceTransform距离数组,和归一化距离数组中获取的一段像素数组

print(mb[150][120:140])  
print(dist[150][120:140])
print(dist_output[150][120:140])

整数型色彩空间二值化图像

[  0   0   0   0   0   0   0   0   0 255 255 255 255 255 255 255 255 255255 255]

浮点型色彩空间最小距离数组,由于数值大于1.0都会被设置为1.0,所以和上面二值化图像一致

[ 0.        0.        0.        0.        0.        0.        0.0.        0.        1.        1.4       2.1969    3.1969    4.19695.1969    6.1969    7.1969    8.196899  9.196899 10.187599]

浮点型色彩空间归一化数组图像,显示骨骼

[0.         0.         0.         0.         0.         0.0.         0.         0.         0.00047065 0.0006589  0.001033960.00150461 0.00197525 0.00244589 0.00291654 0.00338719 0.003857830.00432847 0.00479474]

(四)在获取了背景区域和前景区域(其实前景区域是我们的种子,我们将从这里进行灌水,向四周涨水,但是这个需要在markers中表示)后,这两个区域中有未重合部分(注1)怎么办?首先确定这些区域(寻找种子)

这里是求取硬币偏白色,使用THRESH_BINARY,所以我们获取对象是白色区域,是获取未重合部分,若是我们求取树叶等偏黑,需要使用THRESH_BINARY_INV,此时我们获取的对象是黑色区域,就变为了获取重合部分了。

开始获取未知区域unknown(栅栏会创建在这一区域),为下一步获取种子做准备

#保持色彩空间一致才能进行运算,现在是背景空间为整型空间,前景为浮点型空间,所以进行转换
surface_fg = np.uint8(sure_fg)
unknown = cv.subtract(sure_bg,surface_fg)
cv.imshow("unkown",unknown)

使用print查看背景前景色彩空间不同

 print(sure_fg[150][120:140])print(sure_bg[150][120:140])

输出结果

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[  0   0   0   0   0   0 255 255 255 255 255 255 255 255 255 255 255 255255 255]

(五)获取了这些区域,我们可以获取种子,这是通过connectedComponents实现,获取masker标签,确定的前景区域会在其中显示为以1开始的数据,这就是我们的种子,会从这里开始漫水

利用connectedComponents求图中的连通图现在知道了那些是背景那些是硬币(确定的前景区域)了。那我们就可以创建标签(一个与原图像大小相同,数据类型为 in32 的数组),并标记其中的区域了。对我们已经确定分类的区域(无论是前景还是背景)使用不同的正整数标记,对我们不确定的区域(unknown区域)使用 0 标记。我们可以使用函数 cv2.connectedComponents()来做这件事。它会把对标签进行操作,将背景标记为 0,其他的对象使用从 1 开始的正整数标记(其实这就是我们的种子,水漫时会从这里漫出)。然后将这个标签返回给我们markers,但是,我们知道如果背景标记为 0,那分水岭算法就会把它当成未知区域了。(我们要将未知区域标记为0,所以我们要将背景区域变为其他整数,例如+1)

所以我们想使用不同的整数标记它们。而对不确定的区域(函数cv2.connectedComponents 输出的结果中使用 unknown 定义未知区域)标记为 0。

#获取mask
ret,markers = cv.connectedComponents(surface_fg)

函数原型:

def connectedComponents(image, labels=None, connectivity=None, ltype=None): # real signature unknown; restored from __doc__

参数:

参数image是需要进行连通域处理的二值图像,其他的这里用不到

返回值:

ret是连通域处理的边缘条数,是上面提到的确定区域(出去背景外的其他确定区域:就是前景),就是种子数,我们会从种子开始向外涨水

markers是我们创建的一个标签(一个与原图像大小相同,数据类型为 in32 的数组),其中包含有我们原图像的确认区域的数据(前景区域)

查看部分markers:(0代表的是背景色,)

(六)根据未知区域unknown在markers中设置栅栏,并将背景区域加入种子区域,一起漫水

watershed漫水算法需要我们将栅栏区域设置为0,所以我们需要将markers中背景区域(原来为0,会干扰算法)设置为其他整数。

解决方法将markers整体加一  #此时种子区域不止我们原来的前景区域,有增加了一个背景区域,我们将从这些区域一起灌水。

markers = markers + 1
markers[unknown==255] = 0

(七)根据种子开始漫水,让水漫起来找到最后的漫出点(栅栏边界),越过这个点后各个山谷中水开始合并。注意watershed会将找到的栅栏在markers中设置为-1

markers = cv.watershed(image,markers=markers)  #获取栅栏
image[markers==-1] = [0,0,255]  #根据栅栏,我们对原图像进行操作,对栅栏区域设置为红色

markers再次查看

(八)结果查看

(九)全部代码

import cv2 as cv
import numpy as npdef watershed_demo(image):blur = cv.pyrMeanShiftFiltering(image,10,100)gray = cv.cvtColor(blur,cv.COLOR_BGR2GRAY)  #获取灰度图像ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)#形态学操作,进一步消除图像中噪点kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3))mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  #iterations连续两次开操作sure_bg = cv.dilate(mb,kernel,iterations=3) #3次膨胀,可以获取到大部分都是背景的区域cv.imshow("sure_bg",sure_bg)#距离变换dist = cv.distanceTransform(mb,cv.DIST_L2,5)cv.imshow("dist",dist)dist_output = cv.normalize(dist,0,1.0,cv.NORM_MINMAX)# print(mb[150][120:140])# print(dist[150][120:140])# print(dist_output[150][120:140])cv.imshow("distinct-t",dist_output*50)ret, sure_fg = cv.threshold(dist,dist.max()*0.6,255,cv.THRESH_BINARY)cv.imshow("sure_fg",sure_fg)# print(sure_fg[150][120:140])# print(sure_bg[150][120:140])#获取未知区域surface_fg = np.uint8(sure_fg)  #保持色彩空间一致才能进行运算,现在是背景空间为整型空间,前景为浮点型空间,所以进行转换unknown = cv.subtract(sure_bg,surface_fg)cv.imshow("unkown",unknown)#获取maskers,在markers中含有种子区域ret,markers = cv.connectedComponents(surface_fg)#print(ret)#分水岭变换markers = markers + 1markers[unknown==255] = 0markers = cv.watershed(image,markers=markers)image[markers==-1] = [0,0,255]cv.imshow("result",image)src = cv.imread("./c.png")  #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE)    #创建GUI窗口,形式为自适应
cv.imshow("input image",src)    #通过名字将图像和窗口联系watershed_demo(src)cv.waitKey(0)   #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows()  #销毁所有窗口


http://chatgpt.dhexx.cn/article/yrxh30Ya.shtml

相关文章

分水岭算法 matlab实现

背景 做图像分割的时候用到了,就学习了一下 大概思想 把图像中的像素大小理解成山地的海拔,向山地灌水,海拔低的地方会积水,这些地方称之为谷底。随着水位上升,不同谷底的水会相遇,相遇的地方就是分水岭。…

分水岭算法c语言,Opencv分水岭算法学习

分水岭算法可以将图像中的边缘转化成“山脉”,将均匀区域转化为“山谷”,这样有助于分割目标。 分水岭算法是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中的每一点像素的灰度值表示…

分水岭算法

引言:它是基于拓扑理论的形态学处理方法。将一张图像假想成为一张地貌特征图。 原理理解:灰度图被看作拓扑平面,灰度高看成山峰,灰度低看成山谷。从山谷开始注水,随着水位升高水流会相遇汇合。为了防止汇合&#xff0…

Opencv分水岭算法——watershed自动图像分割用法

分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征。 其他图像分割方法,如阈值,边缘检测等都不会考虑像素在…

目标分割算法之分水岭算法

分水岭算法 1.经典算法原理及实现 传统的目标分割算法主要分为两种 1.基于像素相似性:阈值分割、k-means分割 2.基于像素邻域关系:区域生长、分水岭、基于标记分水岭 分水岭算法原理 如图中展现了凹凸不平的地貌,视觉上明显的位置有盆地及…

分水岭算法的理解和应用

分水岭算法 主要思想 图像的灰度空间很像地球表面的整个地理结构,每个像素的灰度值代表高度。分水岭就是灰度值较大的像素连成的线。二值化阈值可以理解为水平面,比灰度二值化阈值小的像素区域会被淹没。随着水位线的升高,被淹没的区域越来越…

分水岭算法及其实现

1 - 算法描述 1.1 分水岭算法的原理   分水岭的概念是以三维方式来形象化一幅图像为基础的:两个空间坐标再加上强度。在这种“地形学”解释中,考虑三种类型的点:(a)局部最小值点,该点对应一个…

传统图像分割——分水岭算法(watershed)

传统图像分割——分水岭算法(watershed) 文章目录 传统图像分割——分水岭算法(watershed)前言一、什么是分水岭算法?二、经典的分水岭求解算法1.定义2.算法流程 总结 前言 本篇文章主要梳理分水岭算法的原理&#xf…

图像分割 - 分水岭算法

目录 1. 介绍 2. 分水岭算法的实现 距离变换 连接连通分量 3. 代码 1. 介绍 图像是由x,y表示的,如果将灰度值也考虑进去的话,那么一幅图像需要一个三维的空间去表示。 这样就可以把x,y轴比作大地,将灰度值的z轴…

【OpenCv】图像分割——分水岭算法

文章目录 1 原理2 算法改进3 API4 实例 1 原理 分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区…

MFC图像处理CImage类常用操作

原文作者&#xff1a;aircraft 原文地址&#xff1a;https://www.cnblogs.com/DOMLX/p/9598974.html MFC图像处理CImage类常用操作 CImage类头文件为#include<atlimage.h> CImage类读取图片CImage.Load("src.bmp"); CImage类保存图片CImage.Save("dst…

使用CImage进行图像处理

MFC和ATL共享的新类CImage为图像处理提供了许多相应的处理方法 CImage类 我们知道&#xff0c;Visual C的CBitmap类和静态图片控件的功能是比较弱的&#xff0c;它只能显示出在资源中的图标、位图、光标以及图元文件的内容&#xff0c;而不像VB中的Image控件可 以显示出绝大多数…

用CImage类来显示PNG、JPG等图片

系统环境&#xff1a;Windows 7 软件环境&#xff1a;Visual Studio 2008 SP1 本次目的&#xff1a;实现VC单文档、对话框程序显示图片效果 CImage 是VC.NET中定义的一种MFC/ATL共享类&#xff0c;也是ATL的一种工具类&#xff0c;它提供增强型的&#xff08;DDB和DIB&#xff…

CImage类(外部图像文件(BMP、GIF、JPEG等)

CImage类 我们知道&#xff0c;Visual C的CBitmap类和静态图片控件的功能是比较弱的&#xff0c;它只能显示出在资源中的图标、位图、光标以及图元文件的内容&#xff0c;而不像VB中的Image控件可 以显示出绝大多数的外部图像文件(BMP、GIF、JPEG等)。因此&#xff0c;想要在对…

CImage的一般使用方法和技巧

Visual C的CBitmap类的功能是比较弱的,它只能显示出在资源中的图标、位图、光标以及图元文件的内容&#xff0c;而不像VB中的Image控件可以显示出绝大多数的外部图像文件(BMP、GIF、JPEG等)。如果想要在对话框或其他窗口中显示外部图像文件则只能借助于第三方提供的控件或代码,…

图像处理(C++ CImage class)学习笔记

基础篇 A. 图像三原色及灰度值 A1. 彩色图像的三原色 图像三原色 — R&#xff1a;红色red — G&#xff1a;绿色green — B&#xff1a;蓝色blue三原色的取值范围&#xff1a;0&#xff08;无&#xff09;~255&#xff08;满&#xff09; — 红色&#xff1a;R255 G0 B0 —…

Cimage

本系列文章由zhmxy555编写&#xff0c;转载请注明出处。 http://blog.csdn.net/zhmxy555/article/details/7422922 作者&#xff1a;毛星云 邮箱&#xff1a; happylifemxyqq.com 欢迎邮件交流编程心得 我们知道&#xff0c;Visual C中的CBitmap类的功能简直太弱小了&am…

【无标题】c++ MFC图像处理CImage类常用操作代码

原文作者&#xff1a;aircraft 原文地址&#xff1a;https://www.cnblogs.com/DOMLX/p/9598974.html 我看了一下发现关于c下的CImage图像处理类 的图像处理相关的介绍真的是比较少&#xff0c;因为我要做大二的数据结构的课程设计&#xff0c;要用纯c语言去实现&#xff08;老…

C++,CImage类的建立方法(可以打开图像和保存)

建立CImage类&#xff08;以vs2015为例&#xff09; 一&#xff0c; 新建一个MFC项目&#xff1a;名字为 image3 二&#xff0c; 单个文档&#xff0c;MFC标准&#xff0c;然后完成。 三&#xff0c;打开应用程序的 stdafx.h 文件添加 CImage 类的包含文件&#xff1a; #incl…

VB.net 进程通信中FindWindow、FindWindowEX、SendMessage函数的理解

目录 一、代码背景 二、主要工具 三、函数解析 1、FindWindow&#xff1a; 2、 FindWindowEx&#xff1a; 3、SendMessage&#xff1a; 四、具体代码示例&#xff1a; 1、第一部分功能&#xff1a; A、接收端&#xff1a; B、发送端 C、运行测试 2.第二部分功能&…