task4 建模调参

article/2025/10/20 9:54:49

1 读取数据

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

note: 将整型变量的类型尽量压缩,逐步判断并转化为int8,int16,int32,int64

def reduce_mem_usage(df):""" iterate through all the columns of a dataframe and modify the data typeto reduce memory usage.        """start_mem = df.memory_usage().sum() print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))for col in df.columns:col_type = df[col].dtypeif col_type != object:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64)  else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category')end_mem = df.memory_usage().sum() print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
Memory usage of dataframe is 62099672.00 MB
Memory usage after optimization is: 16520303.00 MB
Decreased by 73.4%
sample_feature.head()
SaleIDnamemodelbrandbodyTypefuelTypegearboxpowerkilometernotRepairedDamage...used_timecitybrand_amountbrand_price_maxbrand_price_medianbrand_price_minbrand_price_sumbrand_price_stdbrand_price_averagepower_bin
0073630.061.00.00.06012.50.0...4384.01.010192.035990.01800.013.036457520.04564.03576.05.0
11226240.012.00.00.0015.0-...4756.04.013656.084000.06400.015.0124044600.08992.09080.0NaN
2214874115.0151.00.00.016312.50.0...4384.02.01458.045000.08496.0100.014373814.05424.09848.016.0
3371865109.0100.00.01.019315.00.0...7124.0NaN13992.092900.05200.015.0113034208.08248.08076.019.0
44111080110.051.00.00.0685.00.0...1531.06.04664.031500.02300.020.015414322.03344.03306.06.0

5 rows × 39 columns

continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model']]
continuous_feature_names
['SaleID','name','bodyType','fuelType','gearbox','power','kilometer','notRepairedDamage','seller','offerType','v_0','v_1','v_2','v_3','v_4','v_5','v_6','v_7','v_8','v_9','v_10','v_11','v_12','v_13','v_14','train','used_time','city','brand_amount','brand_price_max','brand_price_median','brand_price_min','brand_price_sum','brand_price_std','brand_price_average','power_bin']

2 线性回归 & 五折交叉验证 & 模拟真实业务情况

下面一段代码是对sample_feature(汽车有尚未修复的损坏)进行转化,这货原来是什么情况?来看一下

sample_feature.notRepairedDamage.value_counts()
0.0    147809
-       32251
1.0     18977
Name: notRepairedDamage, dtype: int64

notRepairedDamage原来是category类型,将列转换成float32类型。首先用0代替-,应该是0代表没有损坏,而1是有损坏

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]train_X = train[continuous_feature_names]
train_y = train['price']

然后将特征和标签提取出来了

简单建模

所谓简单就是线性回归了

from sklearn.linear_model import LinearRegression

虽然简单,但是这里输入参数normalize=True啥意思呢?就是归一化的意思,每个值先减平均数,然后再除以二范数

model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)

查看训练的线性回归模型的截距(intercept)与权重(coef)

下面这段代码就是求出模型的截距和系数,有一点需要自己学习吧,就是他这个函数用法,我自己是想破头也写不出来的。其实他做的就是让系数从大到小排序,肯定越靠前说明重要程度越大啦,但负值越大应该也影响越大

print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
intercept:-110670.68277237505[('v_6', 3367064.341641913),('v_8', 700675.5609398851),('v_9', 170630.27723221114),('v_7', 32322.66193201868),('v_12', 20473.670796932514),('v_3', 17868.079541480864),('v_11', 11474.938996683431),('v_13', 11261.76456000961),('v_10', 2683.9200905975536),('gearbox', 881.8225039248213),('fuelType', 363.90425072160974),('bodyType', 189.60271012071914),('city', 44.94975120522923),('power', 28.55390161674886),('brand_price_median', 0.5103728134079288),('brand_price_std', 0.45036347092635),('brand_amount', 0.14881120395065447),('brand_price_max', 0.0031910186703120124),('SaleID', 5.355989919860818e-05),('train', 9.12696123123169e-08),('seller', -1.2324308045208454e-06),('offerType', -1.2362143024802208e-06),('brand_price_sum', -2.1750068681875495e-05),('name', -0.0002980012713068734),('used_time', -0.0025158943328551053),('brand_price_average', -0.40490484510119196),('brand_price_min', -2.2467753486892215),('power_bin', -34.42064411723048),('v_14', -274.7841180773099),('kilometer', -372.89752666072053),('notRepairedDamage', -495.1903844629022),('v_0', -2045.05495735435),('v_5', -11022.98624056226),('v_4', -15121.731109853255),('v_2', -26098.299920495414),('v_1', -45556.189297267025)]
from matplotlib import pyplot as plt

取随机样本画图

subsample_index = np.random.randint(low=0, high=len(train_y), size=50)

绘制特征v_9的值与标签的散点图,图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大,且部分预测值出现了小于0的情况,说明我们的模型存在一些问题

一堆点,这能看出啥呀,哎,搞不懂,也可能是点取的太多了吧。但一个明显的错误是能看出来的,就是竟然能预测出小于0的值,这肯定不好吧

plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()
The predicted price is obvious different from true price

在这里插入图片描述

通过作图我们发现数据的标签(price)呈现长尾分布,不利于我们的建模预测。原因是很多模型都假设数据误差项符合正态分布,而长尾分布的数据违背了这一假设。

这个做了分布的图,说是长尾分布不是正态分布,所以会出现预测较大的偏差

import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
train_y.hist()
plt.subplot(1,2,2)
train_y[train_y < np.quantile(train_y, 0.9)].hist()
It is clear to see the price shows a typical exponential distribution

在这里插入图片描述

在这里我们对标签进行了 l o g ( x + 1 ) log(x+1) log(x+1) 变换,使标签贴近于正态分布

note:用np.log进行对数运算,这一点好神奇,长尾分布取个log就变成正态分布了!不过自己的理解就是那些比较格路的幺蛾子值取个log就像均值靠拢了,所以更接近于正态分布了吧


train_y_ln = np.log(train_y + 1)
import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
train_y_ln.hist()
plt.subplot(1,2,2)
train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)].hist()
The transformed price seems like normal distribution

在这里插入图片描述

dict(zip(continuous_feature_names, model.coef_)).items()可以将键值对都取出来,然后组成一个tuple数组

model = model.fit(train_X, train_y_ln)print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
intercept:18.750749465562816[('v_9', 8.052409900567445),('v_5', 5.764236596653074),('v_12', 1.6182081236792127),('v_1', 1.4798310582986653),('v_11', 1.1669016563599888),('v_13', 0.9404711296034274),('v_7', 0.7137273083566703),('v_3', 0.6837875771084441),('v_0', 0.008500518010074017),('power_bin', 0.00849796930289183),('gearbox', 0.00792237727832901),('fuelType', 0.006684769706822828),('bodyType', 0.004523520092702889),('power', 0.0007161894205358969),('brand_price_min', 3.334351114748527e-05),('brand_amount', 2.8978797042779114e-06),('brand_price_median', 1.2571172873010354e-06),('brand_price_std', 6.659176363425468e-07),('brand_price_max', 6.194956307517108e-07),('brand_price_average', 5.999345965068619e-07),('SaleID', 2.11941700396494e-08),('seller', 4.986766555248323e-11),('train', 1.0800249583553523e-11),('offerType', -3.7552183584921295e-11),('brand_price_sum', -1.5126504215930698e-10),('name', -7.015512588892066e-08),('used_time', -4.122479372352577e-06),('city', -0.0022187824810425832),('v_14', -0.004234223418120774),('kilometer', -0.013835866226882912),('notRepairedDamage', -0.27027942349846146),('v_4', -0.8315701200994835),('v_2', -0.9470842241619211),('v_10', -1.6261466689762891),('v_8', -40.34300748761719),('v_6', -238.7903638550714)]

再次进行可视化,发现预测结果与真实值较为接近,且未出现异常状况

plt.figure(figsize=(30,10))
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()
The predicted price seems normal after np.log transforming

在这里插入图片描述

五折交叉验证

这里面引用了很多函数需要注意
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error,  make_scorer

note: np.nan_to_num()将nan变成0,将inf变成finit数

def log_transfer(func):def wrapper(y, yhat):result = func(np.log(y), np.nan_to_num(np.log(yhat)))return resultreturn wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    0.7s finished

使用线性回归模型,对未处理标签的特征数据进行五折交叉验证

print('AVG:', np.mean(scores))
AVG: 1.3658023920313753

使用线性回归模型,对处理过标签的特征数据进行五折交叉验证

scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:    2.1s finished
print('AVG:', np.mean(scores))
AVG: 0.1932530183704746
pd.DataFrame(scores.reshape(1,-1))
01234
01.3483041.363491.3807121.3784011.358105
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores
cv1cv2cv3cv4cv5
MAE1.3483041.363491.3807121.3784011.358105

模拟真实业务情况

但在事实上,由于我们并不具有预知未来的能力,五折交叉验证在某些与时间相关的数据集上反而反映了不真实的情况。通过2018年的二手车价格预测2017年的二手车价格,这显然是不合理的,因此我们还可以采用时间顺序对数据集进行分隔。在本例中,我们选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集,最终结果与五折交叉验证差距不大

import datetime
sample_feature
SaleIDnamemodelbrandbodyTypefuelTypegearboxpowerkilometernotRepairedDamage...used_timecitybrand_amountbrand_price_maxbrand_price_medianbrand_price_minbrand_price_sumbrand_price_stdbrand_price_averagepower_bin
0073630.061.00.00.06012.50.0...4384.01.010192.035990.01800.013.036457520.04564.03576.05.0
1214874115.0151.00.00.016312.50.0...4384.02.01458.045000.08496.0100.014373814.05424.09848.016.0
24111080110.051.00.00.0685.00.0...1531.06.04664.031500.02300.020.015414322.03344.03306.06.0
3513764224.0100.01.00.010910.00.0...2482.03.013992.092900.05200.015.0113034208.08248.08076.010.0
46240213.040.00.01.015015.00.0...6184.03.016576.099999.06000.012.0138279072.08088.08344.014.0
..................................................................
917241499944307342.011.00.00.01223.00.0...1538.05.013656.084000.06400.015.0124044600.08992.09080.012.0
91725149995163978121.0104.00.01.016315.00.0...5772.04.013992.092900.05200.015.0113034208.08248.08076.016.0
91726149996184535116.0110.00.00.012510.00.0...2322.02.02944.034500.02900.030.013398006.04724.04548.012.0
9172714999714758760.0111.01.00.0906.00.0...2003.03.02944.034500.02900.030.013398006.04724.04548.08.0
917281499984590734.0103.01.00.015615.00.0...3672.01.013992.092900.05200.015.0113034208.08248.08076.015.0

91729 rows × 39 columns

重设索引,并将原索引丢掉

sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))
0.19577667270300989

绘制学习率曲线与验证曲线

from sklearn.model_selection import learning_curve, validation_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )):  plt.figure()  plt.title(title)  if ylim is not None:  plt.ylim(*ylim)  plt.xlabel('Training example')  plt.ylabel('score')  train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))  train_scores_mean = np.mean(train_scores, axis=1)  train_scores_std = np.std(train_scores, axis=1)  test_scores_mean = np.mean(test_scores, axis=1)  test_scores_std = np.std(test_scores, axis=1)  plt.grid()#区域  plt.fill_between(train_sizes, train_scores_mean - train_scores_std,  train_scores_mean + train_scores_std, alpha=0.1,  color="r")  plt.fill_between(train_sizes, test_scores_mean - test_scores_std,  test_scores_mean + test_scores_std, alpha=0.1,  color="g")  plt.plot(train_sizes, train_scores_mean, 'o-', color='r',  label="Training score")  plt.plot(train_sizes, test_scores_mean,'o-',color="g",  label="Cross-validation score")  plt.legend(loc="best")  return plt  
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)  

在这里插入图片描述

多种模型对比

train = sample_feature[continuous_feature_names + ['price']].dropna()train_X = train[continuous_feature_names]
train_y = train['price']
train_y_ln = np.log(train_y + 1)

线性模型 & 嵌入式特征选择

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
models = [LinearRegression(),Ridge(),Lasso()]
result = dict()
for model in models:model_name = str(model).split('(')[0]scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))result[model_name] = scoresprint(model_name + ' is finished')
LinearRegression is finished
Ridge is finished
Lasso is finished
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result
LinearRegressionRidgeLasso
cv10.1907920.1948320.383899
cv20.1937580.1976320.381893
cv30.1941320.1981230.384090
cv40.1918250.1956700.380526
cv50.1957580.1996760.383611
model = LinearRegression().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:18.750749465575524

在这里插入图片描述

model = Ridge().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:4.671709786976683

在这里插入图片描述

L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。如下图,我们发现power与userd_time特征非常重要。

model = Lasso().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:8.6721824626662

在这里插入图片描述

除此之外,决策树通过信息熵或GINI指数选择分裂节点时,优先选择的分裂特征也更加重要,这同样是一种特征选择的方法。XGBoost与LightGBM模型中的model_importance指标正是基于此计算的

非线性模型

除了线性模型以外,还有许多我们常用的非线性模型如下,在此篇幅有限不再一一讲解原理。我们选择了部分常用模型与线性模型进行效果比对。

下面用到的方法有:线性回归、支持向量机、决策树回归、随机森林、梯度提升回归?、多层感知器、xgboost、lightgbm

from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from xgboost.sklearn import XGBRegressor
from lightgbm.sklearn import LGBMRegressor
models = [LinearRegression(),DecisionTreeRegressor(),RandomForestRegressor(),GradientBoostingRegressor(),MLPRegressor(solver='lbfgs', max_iter=100), XGBRegressor(n_estimators = 100, objective='reg:squarederror'), LGBMRegressor(n_estimators = 100)]
models[0]
[LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False),DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,max_features=None, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, presort='deprecated',random_state=None, splitter='best'),RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',max_depth=None, max_features='auto', max_leaf_nodes=None,max_samples=None, min_impurity_decrease=0.0,min_impurity_split=None, min_samples_leaf=1,min_samples_split=2, min_weight_fraction_leaf=0.0,n_estimators=100, n_jobs=None, oob_score=False,random_state=None, verbose=0, warm_start=False),GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse',init=None, learning_rate=0.1, loss='ls', max_depth=3,max_features=None, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, n_estimators=100,n_iter_no_change=None, presort='deprecated',random_state=None, subsample=1.0, tol=0.0001,validation_fraction=0.1, verbose=0, warm_start=False),MLPRegressor(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,beta_2=0.999, early_stopping=False, epsilon=1e-08,hidden_layer_sizes=(100,), learning_rate='constant',learning_rate_init=0.001, max_fun=15000, max_iter=100,momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,power_t=0.5, random_state=None, shuffle=True, solver='lbfgs',tol=0.0001, validation_fraction=0.1, verbose=False,warm_start=False),XGBRegressor(base_score=None, booster=None, colsample_bylevel=None,colsample_bynode=None, colsample_bytree=None, gamma=None,gpu_id=None, importance_type='gain', interaction_constraints=None,learning_rate=None, max_delta_step=None, max_depth=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,objective='reg:squarederror', random_state=None, reg_alpha=None,reg_lambda=None, scale_pos_weight=None, subsample=None,tree_method=None, validate_parameters=False, verbosity=None),LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,importance_type='split', learning_rate=0.1, max_depth=-1,min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,subsample=1.0, subsample_for_bin=200000, subsample_freq=0)]
result = dict()
for model in models:model_name = str(model).split('(')[0]scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))result[model_name] = scoresprint(model_name + ' is finished')
LinearRegression is finished
DecisionTreeRegressor is finished
RandomForestRegressor is finished
GradientBoostingRegressor is finished
MLPRegressor is finished
XGBRegressor is finished
LGBMRegressor is finished
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result
LinearRegressionDecisionTreeRegressorRandomForestRegressorGradientBoostingRegressorMLPRegressorXGBRegressorLGBMRegressor
cv10.1907920.1967850.1329810.168903336.4807630.1423780.141544
cv20.1937580.1932410.1344800.171857399.9416630.1409220.145501
cv30.1941320.1891230.1336670.170915266.0228590.1393930.143887
cv40.1918250.1900840.1324130.169083353.7651620.1374920.142497
cv50.1957580.2043200.1371530.174078720.0297170.1437330.144852

可以看到随机森林模型在每一个fold中均取得了更好的效果

模型调参

在此我们介绍了三种常用的调参方法如下:

  • 贪心算法 https://www.jianshu.com/p/ab89df9759c8
  • 网格调参 https://blog.csdn.net/weixin_43172660/article/details/83032029
  • 贝叶斯调参 https://blog.csdn.net/linxid/article/details/81189154
## LGB的参数集合:objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']num_leaves = [3,5,10,15,20,40, 55]# 叶子节点个数
max_depth = [3,5,10,15,20,40, 55]# 树最大深度
bagging_fraction = []
feature_fraction = []
drop_rate = []

1 贪心调参

best_obj = dict()
for obj in objective:model = LGBMRegressor(objective=obj)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_obj[obj] = scorebest_leaves = dict()
for leaves in num_leaves:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_leaves[leaves] = scorebest_depth = dict()
for depth in max_depth:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],max_depth=depth)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_depth[depth] = score

2 Grid Search 调参

from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y)
clf.best_params_
{'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'}
model = LGBMRegressor(objective='regression',num_leaves=55,max_depth=15)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
0.13754833106731224

3 贝叶斯调参

from bayes_opt import BayesianOptimization

首先定义一个函数,返回的应该是k折验证的准确率

def rf_cv(num_leaves, max_depth, subsample, min_child_samples):val = cross_val_score(LGBMRegressor(objective = 'regression_l1',num_leaves=int(num_leaves),max_depth=int(max_depth),subsample = subsample,min_child_samples = int(min_child_samples)),X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)).mean()return 1 - val
rf_bo = BayesianOptimization(rf_cv,{'num_leaves': (2, 100),'max_depth': (2, 100),'subsample': (0.1, 1),'min_child_samples' : (2, 100)}
)
rf_bo.maximize()
[31mInitialization[0m
[94m----------------------------------------------------------------------------------------------[0mStep |   Time |      Value |   max_depth |   min_child_samples |   num_leaves |   subsample | 1 | 00m18s | [35m   0.86150[0m | [32m    41.7364[0m | [32m             9.9106[0m | [32m     43.8343[0m | [32m     0.4737[0m | 2 | 00m25s | [35m   0.86523[0m | [32m    20.0225[0m | [32m            11.1218[0m | [32m     62.7188[0m | [32m     0.3173[0m | 3 | 00m17s |    0.86143 |     45.6899 |             64.7975 |      43.3648 |      0.8202 | 4 | 00m10s |    0.83443 |     35.0734 |             94.4035 |       8.8507 |      0.8622 | 5 | 00m18s |    0.86244 |     85.3179 |             23.6400 |      46.9726 |      0.7228 | 
[31mBayesian Optimization[0m
[94m----------------------------------------------------------------------------------------------[0mStep |   Time |      Value |   max_depth |   min_child_samples |   num_leaves |   subsample | 6 | 00m36s | [35m   0.86920[0m | [32m    99.4589[0m | [32m            99.1108[0m | [32m     99.7631[0m | [32m     0.8204[0m | 7 | 00m24s |    0.80646 |      2.5444 |             96.8373 |      99.3405 |      0.8690 | 8 | 00m35s |    0.86895 |     92.8784 |              2.6496 |      99.7885 |      0.2488 | 9 | 00m36s |    0.86895 |     42.1611 |              2.5265 |      99.9897 |      0.1828 | 10 | 00m37s | [35m   0.86921[0m | [32m    99.1173[0m | [32m            57.5858[0m | [32m     99.6229[0m | [32m     0.1268[0m | 11 | 00m31s |    0.85987 |     99.4359 |             99.6975 |      37.0181 |      0.3138 | 12 | 00m41s |    0.86780 |     66.8997 |             21.5978 |      81.4402 |      0.9551 | 13 | 00m41s |    0.86692 |     99.9751 |             75.6942 |      72.3071 |      0.8105 | 14 | 00m29s |    0.82570 |      3.3240 |              2.7883 |      98.3646 |      0.8390 | 15 | 00m18s |    0.77190 |     99.7659 |              5.9422 |       2.2912 |      0.4362 | 16 | 00m29s |    0.86532 |     57.5752 |             99.7148 |      61.8887 |      0.1556 | 17 | 00m20s |    0.82546 |      3.3740 |             99.9999 |      42.6172 |      0.1799 | 18 | 00m33s |    0.86700 |     52.7029 |              2.9349 |      73.3034 |      0.1083 | 19 | 00m20s |    0.80204 |      3.1007 |              3.6067 |       3.0243 |      0.5249 | 20 | 00m39s | [35m   0.86921[0m | [32m    64.1085[0m | [32m            98.4171[0m | [32m     99.6344[0m | [32m     0.1344[0m | 21 | 00m41s | [35m   0.86927[0m | [32m    43.9552[0m | [32m            47.2108[0m | [32m     99.2895[0m | [32m     0.1297[0m | 22 | 00m38s |    0.86555 |     74.0348 |             52.8610 |      61.7144 |      0.1191 | 23 | 00m42s |    0.86703 |     99.5047 |             28.7613 |      74.8431 |      0.1029 | 24 | 00m41s |    0.86601 |     36.6047 |             34.0949 |      64.7690 |      0.1102 | 25 | 00m55s |    0.86916 |     66.7270 |             65.1533 |      99.8953 |      0.9703 | 26 | 00m44s | [35m   0.86940[0m | [32m    72.6885[0m | [32m            25.6077[0m | [32m     99.7277[0m | [32m     0.1478[0m | 27 | 00m47s |    0.86909 |     99.9445 |             20.9597 |      98.0581 |      0.9664 | 28 | 00m45s |    0.86758 |     83.0911 |             99.8907 |      79.5884 |      0.6953 | 29 | 00m48s |    0.86923 |     49.6717 |             17.7407 |      99.3922 |      0.9610 | 30 | 00m48s |    0.86895 |     65.9624 |              2.8017 |      99.2133 |      0.6879 | 
rf_bo.res['max']
{'max_val': 0.8693980187983674,'max_params': {'num_leaves': 99.72769486848688,'max_depth': 72.68851665306862,'subsample': 0.14775375691262158,'min_child_samples': 25.60766609629669}}
1-rf_bo.res['max']['max_val']
0.13060198120163258

总结

在本章中,我们完成了建模与调参的工作,并对我们的模型进行了验证。此外,我们还采用了一些基本方法来提高预测的精度,提升如下图所示。

plt.figure(figsize=(13,5))
sns.lineplot(x=['0_origin','1_log_transfer','2_L1_&_L2','3_change_model','4_parameter_turning'], y=[1.36 ,0.19, 0.19, 0.14, 0.13])

在这里插入图片描述


http://chatgpt.dhexx.cn/article/levFcZ3X.shtml

相关文章

深度学习与神经网络(七)——卷积神经网络之池化pooling 上采样upsample与降采样downsample(下采样)(subsample)(nn.MaxPool2d)

池化层pooling与采样 upsample与downsample upsample(interpolating)是上采样&#xff0c;是图片的放大 unpool是上采样的一种 downsample(subsample)是下采样&#xff0c;是图片的缩小 在卷积神经网络中使用的采样方式就是pooling&#xff0c;有点类似下采样&#xff0c;但不太…

有放回随机抽样:重要参数subsample

原理透析 确认了有多少棵树之后&#xff0c;我们来思考一个问题&#xff1a;建立了众多的树&#xff0c;怎么就能够保证模型整体的效果变强呢&#xff1f;集成的目的是为了模型在样本上能表现出更好的效果&#xff0c;所以对于所有的提升集成算法&#xff0c;每构建一个评估器&…

Subsample子采样(CloudCompare软件)

之前一直以为CC软件里面没有子采样这个功能&#xff0c;不过找了找之后发现还是有的&#xff0c;感觉这些小的功能挺有意思的&#xff0c;所以也就记录一下。 文章目录 一、Random采样二、space采样三、octree采样四、小结 一、Random采样 有时候我总是喜欢使用一些小的样本来…

Android Content Providers(三)——Contacts Provider

接着上篇Android Content Providers&#xff08;二&#xff09;——Contacts Provider继续&#xff0c;接下来要说明的是顶层的Contacts&#xff0c;Contacts是聚合联系人表&#xff0c;在之前讨论的RawContacts是原始联系人表&#xff0c;在Android通讯录的架构中&#xff0c;…

Android contacts 的详解

一、包结构分析 相关联的的projects 1、Contacts相关 联系人分为了Contacts和ContactsCommon&#xff0c;与sim卡联系人相关的是在Telephony中&#xff0c;数据库是在ContactsProvider&#xff0c;apk要push到/system/priv-app/Contacts下 2、Contacts的包结构 3、ContactsComm…

由ContactsProvider的升级引发的OTA首次开机卡白米问题分析

上午的宁静被一个OTA卡白米问题打破&#xff0c;接下来不断有人反馈不同机型都复现了OTA后卡白米&#xff0c;10.9号OTA升级到10.10号的版本&#xff0c;全机型问题&#xff0c;线刷没有问题&#xff0c;好吧&#xff0c;接下来就根据这些信息开始初步分析log吧&#xff01; 初…

Android Content Providers(二)——Contacts Provider

Contacts Provider是Android中一个强大并且灵活的组件&#xff0c;负责管理系统通讯录的数据&#xff0c;对外提供访问接口来对系统通讯录进行访问和操作。 以下是Contacts Provider的组织结构图&#xff1a; 可以看出Android的系统通讯录是三层架构&#xff0c;通过URI进行访…

API Guides Contacts Provider (二)

Data From Sync Adapters 用户直接输入联系人的数据到设备中&#xff0c;但是也可以通过sync adapters从服务器上获取联系人的数据。sync adapter 会自动同步设备和服务器上的数据。sync adapter运行在后台&#xff0c;由系统来控制。系统调用ContentResolver去管理数据。 在A…

Android 7.0后SettingProvider ContactsProvider TelephonyProvider MediaProvider数据库位置

在Android7.0之后&#xff0c;很多Provider数据库的位置都发生了改变&#xff0c;在这记录下&#xff0c;免得以后又忘记了&#xff0c;找起来费劲。 1、SettingsProvider 在之前SettingsProvider是是以settings.db的方法存在&#xff0c;在Android N之后SettingsProvider数据存…

利用Contacts Provider读取手机联系人信息

参考:https://developer.android.google.cn/guide/topics/providers/contacts-provider.html Contacts Provider组织结构 Contacts Provider组织结构由三部分构成,如下图所示: (联系人)Contact:代表联系人,包含了多种联系渠道。(原始联系人)RawContact:每个原始联…

API Guides Contacts Provider

Contacts Provider Contacts Provider是Android的一个强大组件&#xff0c;它管理联系人的核心数据。你在手机联系人看到联系人信息&#xff0c;来源于Contact Provider。当然&#xff0c;你可以在自己的应用用访问ContactProvider的数据&#xff0c;也可以同步手机和服务…

Android官方文档—APP组件(Content Providers)(Contacts Provider)

通讯录内容提供者 Contacts Provider是一个功能强大且灵活的Android组件&#xff0c;用于管理设备的人员数据中​​央存储库。联系人提供程序是您在设备的联系人应用程序中看到的数据源&#xff0c;您还可以在自己的应用程序中访问其数据&#xff0c;并在设备和在线服务之间传…

理清contactsprovider

初步了解android contact provider android的联系人数据单独拿出来做成ContactsProvider&#xff0c;众多的table和view整体看下来&#xff0c;使得联系人的数据错综复杂。但是我们在开发的过程并不需要将所有的table都搞清楚。用到最多的是 ContactsContract.Contacts、Contac…

Android ContactsProvider源码分析

Android源码目录packages\providers下的应用是下载&#xff0c;通话等内置基本应用提供数据存储和操作的provider应用&#xff0c;本文章将针对ContactsProvider源码的架构和实现展开分析。&#xff08;注&#xff1a;本文使用使用android4.0版本进行分析&#xff09; 1、架构设…

ContactsProvider2

本篇不全也不细&#xff0c;只是根据按照个人理解和工作中遇到的问题&#xff0c;总结了个人认为的要点。 1. Android的数据库体系 1.1. 概述1.2 uri结构 2. ContactsProvider2 2.1. 概述2.2. Contacts2.db中的表2.3. ContactProvider2中的实现2.4. 批量访问 1. Android的数…

Android ContactProvider码源解析

Android Contacts源码解析2 4 ContactsProvider模块 1ContactsProvider简介2数据库创建3主要数据库的表结构相互关系 1data表2raw_contacts表3contacts表4mimetypes5其他表 文章转载自&#xff1a;https://blog.csdn.net/kafka_88/article/details/58585607 4&#xff0c;…

Contacts Provider基础

作为四大组件之一的ContentProvider工作中我们很少会用到自己自定义的ContentProvider,用到的最多的就是系统提供的。官方文档提供了两种系统ContentProvider,一种是CalendarProvider,一种是Contacts Provider。今天我们的主角就是Contact Provider。 The Contacts Provider is…

Error: invalid code, hints: [ req_id: * ]

1、问题描述&#xff1a;这个问题是在处理订单支付时需要用户登录遇到的&#xff0c;具体报错信息如下&#xff1a; 2、报错原因&#xff1a; 当前开发者的appid没有支付权限导致 3、解决方案&#xff1a; 需要负责人给分配对应的权限

This application’s bundle identifier does not match its code signing identifier.

今天使用carthage更新第三方后莫名出现真机云心失败,提示 This application’s bundle identifier does not match its code signing identifier. 解决方法: /usr/local/bin/carthage copy-frameworks 进入Building Phases 单击并在New Run Script Phase中添加脚本 将/usr/lo…

Code Sign error: a valid provisioning profile matching the application's Identifier 'com.yourcompany

出现这个错误的原因是因为&#xff1a;appid和provisioning profile不匹配 &#xff01;有两种解决的办法&#xff1a;重新下载provisioning profile&#xff0c;或者可能因为&#xff1a;生成证书和appid 所用的根证书不同&#xff0c;最好重新都生成然后下载。&#xff08;这…