深度卷积神经网络及各种改进

article/2025/8/22 13:16:23

文章目录

    • 1、残差网络
    • 2、不同大小卷积核并行卷积
    • 3、利用(1,x),(x,1)卷积代替(x,x)卷积
    • 4、采用瓶颈(Bottleneck)结构
    • 5、深度可分离卷积
    • 6、改进版深度可分离卷积+残差网络
    • 7、倒转残差(Inverted residuals)结构
    • 8、并行空洞卷积

1、残差网络

这个网络主要源自于Resnet网络,其作用是:
将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分。
意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献。
实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率。

最终可以使得网络越来越深,Resnet152就是一个很深很深的网络。

残差网络的典型结构如下:

在这里插入图片描述

2、不同大小卷积核并行卷积

这个结构主要是在Inception网络结构中出现。
Inception网络采用不同大小的卷积核,使得存在不同大小的感受野,最后实现拼接达到不同尺度特征的融合。

不同大小卷积核并行卷积的典型结构如下:

在这里插入图片描述

3、利用(1,x),(x,1)卷积代替(x,x)卷积

这种结构主要利用在InceptionV3网络中。

利用1x7的卷积和7x1的卷积代替7x7的卷积,这样可以只使用约(1x7 + 7x1) / (7x7) = 28.6%的计算开销;利用1x3的卷积和3x1的卷积代替3x3的卷积,这样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。
下图利用1x7的卷积和7x1的卷积代替7x7的卷积。

在这里插入图片描述

下图利用1x3的卷积和3x1的卷积代替3x3的卷积。

在这里插入图片描述

4、采用瓶颈(Bottleneck)结构

这个结构在Resnet网络里非常常见,其它网络也有用到。
所谓Bottleneck结构就是首先利用1x1卷积层进行特征压缩,再利用3x3卷积网络进行特征提取,再利用1x1卷积层进行特征扩张

该结构相比于直接对输入进行3x3卷积减少了许多参数量。

当输入为26,26,512时,直接使用3x3、filter为512的卷积网络的参数量为512x3x3x512=2,359,296‬。

采用Bottleneck结构的话,假设其首先利用1x1、filter为128卷积层进行特征压缩,再利用3x3、filter为128的卷积网络进行特征提取,再利用1x1、filter为512的卷积层进行特征扩张,则参数量为 512×1×1×128 + 128×3×3×128 + 128×1×1×512 =‬ 278,528。

可以看出来确实时下降了很多呀。

在这里插入图片描述

5、深度可分离卷积

深度可分离卷积主要在MobileNet模型上应用。
其特点是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,在利用1x1的卷积调整厚度。

在这里插入图片描述

假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。

应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。

6、改进版深度可分离卷积+残差网络

这种结构主要存在在Xception网络中。
改进版深度可分离卷积就是调换了一下深度可分离的顺序,先进行1x1卷积调整通道,再利用3x3卷积提取特征。
和普通的深度可分离卷积相比,参数量也会有一定的变化。

在这里插入图片描述

改进版深度可分离卷积加上残差网络的结构其实和它的名字是一样的,很好理解。
如下图所示:

在这里插入图片描述

7、倒转残差(Inverted residuals)结构

在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更好,参数更少,先进行压缩,再进行扩张

而Inverted residuals结构,在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,利用1x1卷积降维,先进行扩张,再进行压缩
这种结构主要用在MobilenetV2中。
其主要结构如下:

在这里插入图片描述

8、并行空洞卷积

这个结构出现在Deeplabv3语义分割中。

在这里插入图片描述

其经过并行的空洞卷积,分别用不同rate的空洞卷积进行特征提取,再进行合并,再进行1x1卷积压缩特征。

空洞卷积可以在不损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。如下就是空洞卷积的一个示意图,所谓空洞就是特征点提取的时候会跨像素。

在这里插入图片描述


http://chatgpt.dhexx.cn/article/guJThRyL.shtml

相关文章

深度学习-卷积神经网络(python3代码实现)

卷积神经网络(上) 作者:Bossof537 写这个也不容易,小哥哥小姐姐转载请注明出处吧,感谢! 1、简介 卷积神经网络与常规的神经网络十分相似,它们都由可以对权重和偏置进行学习的神经元构成。每个神…

深度神经网络与卷积神经网络的区别

前馈神经网络、BP神经网络、卷积神经网络的区别与联系 一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。 2、BP…

深度卷积神经网络是什么,卷积神经网络结构设计

卷积神经网络算法是什么? 一维构筑、二维构筑、全卷积构筑。 卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习&a…

深度学习,卷积神经网络

卷积神经网络 1.卷积神经网络应用领域 CV领域发展 CV领域是计算机视觉(Computer Vision)领域的简称。 计算机视觉是指利用计算机模拟人类视觉系统的科学,让计算机具有类似于人类在观察外界的视觉、图像的能力,包括图像处理、图…

AlexNet-深度卷积神经网络(CNN卷积神经网络)

文章目录 深度卷积神经网络(AlexNet)AlexNet模型说明激活函数选定模型定义读取数据集训练AlexNet小结 深度卷积神经网络(AlexNet) 2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越出手工设计的特征。 它一…

深度学习中的卷积神经网络

博主简介 博主是一名大二学生,主攻人工智能研究。感谢让我们在CSDN相遇,博主致力于在这里分享关于人工智能,c,Python,爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主,博主会继续更新的&#xff0c…

深度学习:卷积神经网络(详解版)

文章目录 一、全局连接VS局部连接1.1 局部神经元连接的优势1.2 全连接网络的权重参数量1.3 神经网络的局部特征提取(卷积) 二:感受野2.1 生物上的定义2.2 深度学习的定义2.3 感受野的作用2.4 感受野的计算公式2.5 感受野对网络的影响 三&…

深度卷积神经网络基本介绍

关于深度卷积神经网络的前世今生,就不在此处进行过多的介绍。在此,主要对网络的各个组成部分进行简要介绍: 图1 基本的深度卷积网络结构 通过图1可知深度卷积神经网络主要是由输入层、卷积层、激活函数、池化层、全连接层和输出层组成。以下将…

深度卷积神经网络(CNN)

CNN简述 卷积神经网络(Convolutional Neural Network,CNN),它是属于前馈神经网络的一种,其特点是每层的神经元节点只响应前一层局部区域范围内的神经元(全连接网络中每个神经元节点则是响应前一层的全部节…

深度学习|卷积神经网络

一、卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习神经网络结构,主要用于图像识别、计算机视觉等领域。该结构在处理图像等高维数据时表现出色,因为它具有共享权重和局部感知的特点…

什么是深度卷积神经网络,卷积神经网络怎么学

卷积神经网络通俗理解 。 卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法…

深度学习—卷积神经网络(Convolutional Neural Networks)

卷积神经网络(Convolutional Neural Networks) 卷积神经网络(convolutional neural network, CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。例如时间序列数据(可以认为是在时间轴上有规律地…

深度卷积图神经网络(Deep Convolutional Graph Neural Network,DCGNN)的基本概念与应用

目录 一、引言 1.1 神经网络的发展历程 1.2 图神经网络的出现 二、深度卷积图神经网络的基本概念 2.1 图的表示 2.2 图卷积神经网络 2.3 深度卷积图神经网络 三、深度卷积图神经网络的应用 3.1 图像分类 3.2 图像分割 3.3 图像生成 四、深度卷积图神经网络的优缺点 …

超级详细的安装虚拟机教程--配图--步骤拆分

1、首先我们需要下载两个文件,一个虚拟机文件,一个程序光盘文件。然后我们安装虚拟机, 类似于这两个文件: 2、虚拟机安装好之后回来到这个页面:点击创建新的虚拟机 3、选择界面,建议选择自定义:…

VMware vSphere Client 安装虚拟机

一、VMware vSphere Client安装虚拟机步骤。 1、启动虚拟机安装,如下图所示。 2、选择所需要安装的虚拟机类型,例如Centos7 、ubuntu、debian等。 3、选择磁盘、内存、CPU大小。 4、启动虚拟机。 5、选择操作系统镜像进行安装。 二、操作系统安装。 1、…

Mac m2芯片安装虚拟机win11

写在前面,这两天安装虚拟机和Windows系统搞的我头皮发麻,遇到了很多不能解决的问题,主要就是m1/m2芯片好多软件都不兼容脑阔疼,失败的路程就不展示了,我们只展示成功过程中的修问题 一开始使用的virtual box虚拟机&am…

VirtualBox安装虚拟机全过程

使用Virtual Box安装虚拟机,虚拟机操作系统使用CentOS7进行安装,安装完成后解决网络设置的问题。 一、虚拟机新建过程 1、点击新建。 2、设置内存大小,点击下一步。 3、选择虚拟硬盘,点击创建。 4、选择创建虚拟硬盘,点…

crossover2023最新苹果笔记本mac系统如何安装虚拟机?

mac系统怎么装虚拟机?如果只在mac上安装虚拟机软件是无法正常运行Windows系统的,还需要将Windows镜像文件导入由虚拟机软件搭建的Windows系统运行环境。mac虚拟机性能怎么样?mac虚拟机的性能由电脑本身的存储空间,以及虚拟机软件&…

安装虚拟机步骤 详细

虚拟机安装步骤 打开VMware Workstation,点击创建新的虚拟机。 点击自定义(高级)(C),下一步。 选择虚拟机硬件兼容性 Workstation 15.x,下一步。 选择稍后安装操作系统,下一步。 …

cas cvm服务器虚拟化安装虚拟机,CAS系统如何安装虚拟机

1、在CVM的云平台中选择一台物理服务器右击,在弹出的选项中选择“增加虚拟机”。给虚拟机配置名称,选择操作系统版本,这一步一定要注意,这里选择的操作系统版本指的是会安装对应操作系统版本的驱动,如果这里选择的版本和实际安装的操作系统版本不一致会导致虚拟机不能正常…