math_证明常用等价无穷小泰勒展开案例代换

article/2025/6/18 10:34:30

文章目录


文章目录

等价无穷小和泰勒公式

  • 等价无穷小可以有泰勒公式推导(通用)
  • 通过泰勒公式的变形,可以获得各式各样的等价无穷小
  • 如果不使用泰勒公式,直接从极限的角度和函数的基本性质来证明,从中也可以学习到一些技巧,开阔思路

常用等价无穷小

在这里插入图片描述

  • 后半部分相对不如第一部分常用(都可以通过泰勒公式推导)

泰勒公式&等价无穷小求解极限

  • 带有peano余项的泰勒公式(maclaurin)公式,可以方便的求出一些函数的极限
  • 例如

lim ⁡ x → 0 e x − c o s x − x l n ( 1 + x 2 ) e x = 1 + x + x 2 2 ! + o ( x 2 ) ; c o s x = 1 − x 2 2 ! + o ( x 2 ) ; 于是 , 分子可以被统一为关于 x 的幂的形式 ( 通过合并幂以及 ( 有限个同阶等价无穷小 ) ) : e x − c o s x − x = ( 1 + x + x 2 2 ! ) − ( 1 − x 2 2 ) − x + o ( x 2 ) = x 2 + o ( x 2 ) o ( x 2 ) 是 x 2 的高阶无穷小 , 有 lim ⁡ x → 0 o ( x 2 ) x 2 = 0 分母可以通过等价无穷小直接将 ( l n ( 1 + x 2 ) 替换为 x 2 ) 从而函数的 ( x → 0 ) 极限 = lim ⁡ x → 0 x 2 + o ( x 2 ) x 2 = lim ⁡ x → 0 ( 1 + o ( x 2 ) x 2 ) = 1 + 0 = 1 \lim_{x\rightarrow 0}\frac{e^{x}-cosx-x}{ln(1+x^2)} \\e^x=1+x+\frac{x^2}{2!}+o(x^2); \\cosx=1-\frac{x^2}{2!}+o(x^2); \\于是,分子可以被统一为关于x的幂的形式(通过合并幂以及(有限个同阶等价无穷小)): \\ e^x-cosx-x=(1+x+\frac{x^2}{2!})-(1-\frac{x^2}{2})-x+o(x^2) \\=x^2+o(x^2) \\o(x^2)是x^2的高阶无穷小,有\lim_{x\rightarrow 0}\frac{o(x^2)}{x^2}=0 \\分母可以通过等价无穷小直接将(ln(1+x^2)替换为x^2) \\ 从而函数的(x\rightarrow 0)极限=\lim_{x\rightarrow 0}{\frac{x^2+o(x^2)}{x^2}} \\=\lim_{x\rightarrow 0}(1+\frac{o(x^2)}{x^2}) =1+0=1 x0limln(1+x2)excosxxex=1+x+2!x2+o(x2);cosx=12!x2+o(x2);于是,分子可以被统一为关于x的幂的形式(通过合并幂以及(有限个同阶等价无穷小)):excosxx=(1+x+2!x2)(12x2)x+o(x2)=x2+o(x2)o(x2)x2的高阶无穷小,x0limx2o(x2)=0分母可以通过等价无穷小直接将(ln(1+x2)替换为x2)从而函数的(x0)极限=x0limx2x2+o(x2)=x0lim(1+x2o(x2))=1+0=1

无穷小量

  • 如果 lim ⁡ x → ∗ f ( x ) = 0 , 则称 , f ( x ) 为 x → ∗ 时的无穷小量 如果\lim\limits_{x\to{*}}f(x)=0,则称,f(x)为x\to *时的无穷小量 如果xlimf(x)=0,则称,f(x)x时的无穷小量

无穷小量的比较

  • 下面用 lim ⁡ 来简写 lim ⁡ x → ∗ 下面用\lim来简写\lim\limits_{x\to {*}} 下面用lim来简写xlim
    • 设 lim ⁡ a ( x ) = 0 , lim ⁡ b ( x ) = 0 设\lim a(x)=0,\lim b(x)=0 lima(x)=0,limb(x)=0
    • 记 : k = k ( a ( x ) , b ( x ) ) = lim ⁡ a ( x ) b ( x ) 记:k=k(a(x),b(x))=\lim\frac{a(x)}{b(x)} :k=k(a(x),b(x))=limb(x)a(x)
  • 高阶无穷小:
    • k = 0 k=0 k=0
      • 记为: a ( x ) = o ( b ( x ) ) , 表示 a ( x ) 是 b ( x ) 同一个过程下的高阶无穷小 a(x)=o(b(x)),表示a(x)是b(x)同一个过程下的高阶无穷小 a(x)=o(b(x)),表示a(x)b(x)同一个过程下的高阶无穷小
  • 低阶:
    • k = ∞ k=\infin k=
  • 同阶:
    • k = C ≠ 0 k=C\neq0 k=C=0
    • 等价 : k = C = 1 等价:k=C=1 等价:k=C=1
      • 这是同阶的特殊情况!

无穷小的阶(相对阶)

如果 lim ⁡ a ( x ) ( b ( x ) ) k = C ≠ 0 则 a ( x ) 是 b ( x ) 的 k 阶无穷小 如果\lim\frac{a(x)}{(b(x))^k}=C\neq 0 \\则a(x)是b(x)的k阶无穷小 如果lim(b(x))ka(x)=C=0a(x)b(x)k阶无穷小

  • 常用的等价无穷小比较多

    • 对于三角函数相关的等价无穷小,他们大多可以通过

      • 三角恒等式转换函数名
      • 配凑系数(依据第一重要极限):

      lim ⁡ x → 0 s i n ( x ) x = 1 \lim_{x\rightarrow0}{\frac{sin(x)}{x}}=1 x0limxsin(x)=1

    • 通常通过一下三角函数倍角公式:(将cos函数转化为sin进行利用第一重要极限)

      1 − c o s x = 1 − ( 1 − 2 s i n 2 ( x ) ) = 2 s i n 2 x 2 1-cosx=1-(1-2sin^2(x))=2sin^2\frac{x}{2} 1cosx=1(12sin2(x))=2sin22x

      • 两边同乘以 − 1 c o s x − 1 = − 2 s i n 2 x 2 \\两边同乘以-1 \\ cosx-1=-2sin^2{\frac{x}{2}} 两边同乘以1cosx1=2sin22x

利用等价无穷小来计算极限(代换原则)

  • 总的来说,代换之后,不可以相互抵消(产生最高阶无穷小0 )

    • image-20220705091521147
  • 整个式子中的乘除因子可以用等价无穷小替换求极限

    • 加减的时候谨慎替换

    • 被求极限的表达式如果表示成 ∑ e i ( x ) , 并且 e i = ∏ t j ( x ) \sum{e_i(x)},并且e_i=\prod_{}t_j(x) ei(x),并且ei=tj(x)

      • 那么对于 t j t_j tj的替换属于局部替换,这是错误的替换
    • 例如:

      • lim ⁡ x → 0 ln ⁡ ( 1 + x ) − x x 2 = lim ⁡ x → 0 ( ln ⁡ ( 1 + x ) x 2 − x x 2 ) 此处需要小心 , 不可以轻易将 ln ⁡ ( 1 + x ) 替换为 x lim ⁡ x → 0 ln ⁡ ( 1 + x ) x 2 属于 0 0 型 , 可以考虑使用洛必达法则 lim ⁡ x → 0 ( ln ⁡ ( 1 + x ) x 2 − x x 2 ) ≠ lim ⁡ x → 0 ln ⁡ ( 1 + x ) x 2 − lim ⁡ x → 0 x x 2 因为 , 右侧中第二部分式无穷大 , 不满足基本极限的加减运算法则 \lim\limits_{x\to 0}\frac{\ln (1+x)-x}{x^2} =\lim\limits_{x\to 0}({\frac{\ln (1+x)}{x^2}-\frac{x}{x^2}}) \\此处需要小心,不可以轻易将\ln {(1+x)}替换为x \\\lim\limits_{x\to 0}\frac{\ln{(1+x)}}{{x^2}}属于\frac{0}{0}型, \\可以考虑使用洛必达法则 \\ \lim\limits_{x\to 0}({\frac{\ln (1+x)}{x^2}-\frac{x}{x^2}}) \neq\lim\limits_{x\to 0}\frac{\ln{(1+x)}}{{x^2}}-\lim\limits_{x\to 0}\frac{x}{{x^2}} \\因为,右侧中第二部分式无穷大,不满足基本极限的加减运算法则 x0limx2ln(1+x)x=x0lim(x2ln(1+x)x2x)此处需要小心,不可以轻易将ln(1+x)替换为xx0limx2ln(1+x)属于00,可以考虑使用洛必达法则x0lim(x2ln(1+x)x2x)=x0limx2ln(1+x)x0limx2x因为,右侧中第二部分式无穷大,不满足基本极限的加减运算法则

等价无穷小充要条件

  • x → ∗ 的过程中 , a ( x ) − b ( x ) = o ( b ( x ) ) a ( x ) , b ( x ) 调换顺序依然成立 ( a ( x ) ∼ b ( x ) ⇔ b ( x ) ∼ a ( x ) ) x\to{*}的过程中,a(x)-b(x)=o(b(x)) \\a(x),b(x)调换顺序依然成立(a(x)\sim b(x) \Leftrightarrow b(x)\sim{a(x)}) x的过程中,a(x)b(x)=o(b(x))a(x),b(x)调换顺序依然成立(a(x)b(x)b(x)a(x))

    • 例如 x 3 + x 4 ∼ x 3 , 其中 a ( x ) = x 3 + x 4 ; b ( x ) = x 3 例如x^3+x^4\sim x^3,其中a(x)=x^3+x^4;b(x)=x^3 例如x3+x4x3,其中a(x)=x3+x4;b(x)=x3
      • a ( x ) − b ( x ) = x 4 = o ( b ( x ) ) a(x)-b(x)=x^4=o(b(x)) a(x)b(x)=x4=o(b(x))
      • b ( x ) − a ( x ) = − x 4 = o ( b ( x ) ) b(x)-a(x)=-x^4=o(b(x)) b(x)a(x)=x4=o(b(x))

常用的等价无穷小和推导

sin ⁡ ( x ) ∼ x \sin(x)\sim x sin(x)x

lim ⁡ x → 0 s i n ( x ) x = 1 ; 第一重要极限 \lim_{x\rightarrow 0}{\frac{sin(x)}{x}}=1;第一重要极限 x0limxsin(x)=1;第一重要极限

t a n ( x ) ∼ x tan(x)\sim x tan(x)x

lim ⁡ x → 0 t a n ( x ) x = 1 lim ⁡ x → 0 s i n x x c o s ( x ) = lim ⁡ x → 0 s i n x x 1 c o s x = lim ⁡ x → 0 ( 1 ⋅ 1 c o s x ) = lim ⁡ x → 0 1 lim ⁡ x → 0 c o s ( x ) = 1 \\ \lim_{x\rightarrow 0}{\frac{tan(x)}{x}}=1 \\ \lim_{x\rightarrow 0}{\frac{sinx}{xcos(x)}} =\lim_{x\rightarrow0}{\frac{sinx}{x}\frac{1}{cosx}} =\lim_{x\rightarrow0}{(1\cdot\frac{1}{cosx})} =\frac{\lim\limits_{x\rightarrow0}{1}}{\lim\limits_{x\rightarrow0}cos(x)}=1 x0limxtan(x)=1x0limxcos(x)sinx=x0limxsinxcosx1=x0lim(1cosx1)=x0limcos(x)x0lim1=1

a r c s i n ( x ) ∼ x arcsin(x)\sim x arcsin(x)x

令 t = a r c s i n ( x ) , x = s i n ( t ) , t → 0 ( x → 0 ) lim ⁡ x → 0 a r c s i n ( x ) x = lim ⁡ t → 0 t s i n ( t ) = 1 令t=arcsin(x),x=sin(t),t\rightarrow0(x\rightarrow 0) \\ \lim_{x\rightarrow0}{\frac{arcsin(x)}{x}} =\lim_{t\rightarrow0}{\frac{t}{sin(t)}}=1 t=arcsin(x),x=sin(t),t0(x0)x0limxarcsin(x)=t0limsin(t)t=1

a r c t a n ( x ) ∼ x arctan(x)\sim x arctan(x)x

lim ⁡ x → 0 a r c t a n ( x ) x = 1 令 t = a r c t a n ( x ) , x = t a n ( t ) ; ⇒ lim ⁡ x → 0 a r c t a n ( x ) x = lim ⁡ t → 0 t t a n ( t ) = 1 \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}}=1 \\ \\令t=arctan(x), \\x=tan(t); \\\Rightarrow \lim_{x\rightarrow 0}{\frac{arctan(x)}{x}} =\lim_{t\rightarrow 0}{\frac{t}{tan(t)}}=1 x0limxarctan(x)=1t=arctan(x),x=tan(t);x0limxarctan(x)=t0limtan(t)t=1

l n ( 1 + x ) ∼ x ln(1+x)\sim x ln(1+x)x

lim ⁡ x → 0 l n ( 1 + x ) x = 1 利用对数性质和第二重要极限证明 lim ⁡ x → 0 l n ( 1 + x ) x = lim ⁡ x → 0 1 x l n ( 1 + x ) = lim ⁡ x → 0 l n ( 1 + x ) 1 x = lim ⁡ x → 0 l n ( e ) = 1 \\\lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}}=1 \\利用对数性质和第二重要极限证明 \\ \lim_{x\rightarrow 0}{\frac{ln(1+x)}{x}} =\lim_{x\rightarrow 0}{\frac{1}{x}{ln(1+x)}} =\lim_{x\rightarrow 0}{ln(1+x)^\frac{1}{x}} =\lim_{x\rightarrow0}ln(e)=1 x0limxln(1+x)=1利用对数性质和第二重要极限证明x0limxln(1+x)=x0limx1ln(1+x)=x0limln(1+x)x1=x0limln(e)=1

l o g a ( 1 + x ) ∼ 1 l n ( a ) x log_a(1+x)\sim \frac{1}{ln(a)}x loga(1+x)ln(a)1x

更一般的 , 可有 lim ⁡ x → 0 l o g a ( 1 + x ) 1 l n ( a ) x = 1 根据换底公式 ( c h a n g e b a s e ) log ⁡ a e = l n ( e ) l n ( a ) = 1 l n ( a ) lim ⁡ x → 0 l o g a ( 1 + x ) x = lim ⁡ x → 0 1 x l o g a ( 1 + x ) = lim ⁡ x → 0 l o g a ( ( 1 + x ) 1 x ) = l o g a ( e ) = 1 l n ( a ) ∴ l o g a ( 1 + x ) ∼ 1 l n ( a ) x 更一般的,可有 \lim_{x\rightarrow0}{\frac{log_a(1+x)}{\frac{1}{ln(a)}x}}=1 \\根据换底公式(change\ base) \\\log_{a}{e}=\frac{ln{(e)}}{ln(a)}=\frac{1}{ln(a)} \\ \lim_{x\rightarrow0}{\frac{log_a(1+x)}{x}} =\lim_{x\rightarrow 0}\frac{1}{x}{log_a{(1+x)}} =\lim_{x\rightarrow0}log_a((1+x)^{\frac{1}{x}})=log_a(e)=\frac{1}{ln(a)} \\\therefore log_a(1+x)\sim \frac{1}{ln(a)}x 更一般的,可有x0limln(a)1xloga(1+x)=1根据换底公式(change base)logae=ln(a)ln(e)=ln(a)1x0limxloga(1+x)=x0limx1loga(1+x)=x0limloga((1+x)x1)=loga(e)=ln(a)1loga(1+x)ln(a)1x

e x − 1 ∼ x e^x-1\sim x ex1x

lim ⁡ x → 0 e x − 1 x = 1 换元法 : 令 t = e x − 1 ; t = ( e x − 1 ) → 0 ( x → 0 ) 即 , 有 lim ⁡ x → 0 x = lim ⁡ t → 0 t = 0 则 x = l n ( t + 1 ) lim ⁡ x → 0 e x − 1 x = lim ⁡ t → 0 t l n ( t + 1 ) = 1 e x − 1 ∼ x \lim_{x\rightarrow 0}{\frac{e^x-1}{x}}=1 \\ 换元法:令t=e^x-1; \\t=(e^x-1)\rightarrow0(x\rightarrow0)即, 有\lim_{x\rightarrow0}{x}=\lim_{t\rightarrow 0}{t}=0 \\则x=ln(t+1) \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}} =\lim_{t\rightarrow0}{\frac{t}{ln{(t+1)}}}=1 \\ e^x-1\sim x x0limxex1=1换元法:t=ex1;t=(ex1)0(x0),x0limx=t0limt=0x=ln(t+1)x0limxex1=t0limln(t+1)t=1ex1x

( a x − 1 ) ∼ x ln ⁡ a (a^x-1)\sim x\ln a (ax1)xlna

更一般的,可有
( a x − 1 ) ∼ x ln ⁡ a o r i g i n a l = lim ⁡ x → 0 a x − 1 x ln ⁡ a 令 t = a x − 1 ; t → 0 ( x → 0 ) ; x = l o g a ( t + 1 ) l o g a ( 1 + t ) ∼ 1 l n ( a ) t o r i g i n a l = lim ⁡ t → 0 t log ⁡ a ( t + 1 ) = lim ⁡ t → 0 t 1 ln ⁡ a t = ln ⁡ a ∴ ( a x − 1 ) ∼ x ln ⁡ a (a^x-1)\sim x\ln a \\ original=\lim_{x\rightarrow 0}{\frac{a^x-1}{x\ln a}} \\ 令t=a^x-1; \\t\rightarrow0(x\rightarrow0); \\x=log_a(t+1) \\ log_a(1+t)\sim \frac{1}{ln(a)}t \\original=\lim_{t\rightarrow0}{\frac{t}{\log_a(t+1)}} =\lim_{t\rightarrow 0}{\frac{t}{\frac{1}{\ln a}t}} =\ln a \\\therefore (a^x-1)\sim x\ln a (ax1)xlnaoriginal=x0limxlnaax1t=ax1;t0(x0);x=loga(t+1)loga(1+t)ln(a)1toriginal=t0limloga(t+1)t=t0limlna1tt=lna(ax1)xlna

1 − c o s ( x ) ∼ 1 2 x 2 1-cos(x)\sim \frac{1}{2}x^2 1cos(x)21x2

lim ⁡ x → 0 1 − c o s ( x ) 1 2 x 2 = 1 三角函数倍角公式 c o s x = c o s 2 ( x 2 ) − s i n 2 ( x 2 ) = 1 − 2 sin ⁡ 2 ( x 2 ) , ( c o s x = 2 c o s 2 ( x 2 ) − 1 ; s i n 形式更重要 , 比较接近 ( 容易使用 ) 第一重要极限 ) lim ⁡ x → 0 1 − c o s ( x ) x 2 = lim ⁡ x → 0 2 s i n 2 ( x 2 ) x 2 = lim ⁡ x → 0 2 s i n 2 ( x 2 ) 4 ( x 2 ) 2 = lim ⁡ x → 0 1 2 ( s i n ( x 2 ) x 2 ) 2 = 1 2 ∴ lim ⁡ x → 0 1 − c o s ( x ) 1 2 x 2 = 1 \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 \\三角函数倍角公式cosx=cos^2(\frac{x}{2})-sin^2{(\frac{x}{2})} \\ =1-2\sin^2(\frac{x}{2}) ,(cosx=2cos^2(\frac{x}{2})-1;sin形式更重要,比较接近(容易使用)第一重要极限) \\ \lim_{x\rightarrow 0}{\frac{1-cos(x)}{x^2}}=\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{x^2}} =\lim_{x\rightarrow0}{\frac{2sin^{2}{(\frac{x}{2})}}{4(\frac{x}{2})^2}} \\ =\lim_{x\rightarrow0}{\frac{1}{2}{(\frac{sin(\frac{x}{2})}{\frac{x}{2}})^2} } =\frac{1}{2} \\ \therefore \lim_{x\rightarrow0}{\frac{1-cos(x)}{\frac{1}{2}x^2}}=1 x0lim21x21cos(x)=1三角函数倍角公式cosx=cos2(2x)sin2(2x)=12sin2(2x),(cosx=2cos2(2x)1;sin形式更重要,比较接近(容易使用)第一重要极限)x0limx21cos(x)=x0limx22sin2(2x)=x0lim4(2x)22sin2(2x)=x0lim21(2xsin(2x))2=21x0lim21x21cos(x)=1

稍复杂的等价无穷小

( 1 + x ) a − 1 ∼ a x (1+x)^a-1\sim ax (1+x)a1ax

  • 前面证明过的两个等价无穷小做替换,来证明稍微复杂的等价无穷小

根据对数的含义&性质:

a l o g a b = b l n x n = n ⋅ l n ( x ) ( 1 + x ) a = e l o g e ( 1 + x ) a = e l n ( 1 + x ) a = e a ⋅ l n ( 1 + x ) \\ a^{log_ab}=b\\ ln{x^n}=n\cdot ln(x)\\ (1+x)^a=e^{log_e{(1+x)^a}}=e^{ln{(1+x)^a}}=e^{a\cdot ln{(1+x)}} alogab=blnxn=nln(x)(1+x)a=eloge(1+x)a=eln(1+x)a=ealn(1+x)

  • 从而需要被证明的命题变为:

e a ⋅ l n ( 1 + x ) − 1 ∼ x 或者说 : ( 1 + x ) a − 1 = e a ⋅ ln ⁡ ( x + 1 ) − 1 ∼ a ⋅ ln ⁡ ( x + 1 ) e^{a\cdot ln{(1+x)}}-1\sim x \\或者说: {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) ealn(1+x)1x或者说:(1+x)a1=ealn(x+1)1aln(x+1)

lim ⁡ x → 0 e a ⋅ l n ( 1 + x ) − 1 x ★ 利用前面证明的 l n ( x + 1 ) ∼ x , 将分母进行替换 ( 等价无穷小替换定理 ) 从而得到形如另一个等价无穷小的形式 : lim ⁡ x → 0 e x − 1 x = 1 ★ 或者 , 替换分子 ( 分子整体是符合 e x − 1 ( e x − 1 ∼ x 的形式 ) ) , 这里 x 取值为表达式 x = a ⋅ ln ⁡ ( x + 1 ) , 从而 : ( 1 + x ) a − 1 = e a ⋅ ln ⁡ ( x + 1 ) − 1 ∼ a ⋅ ln ⁡ ( x + 1 ) 现在 , lim ⁡ x → 0 ( 1 + x ) a − 1 x = lim ⁡ x → 0 a ⋅ ln ⁡ ( x + 1 ) x = lim ⁡ x → 0 a l n ( x + 1 ) x = a 从而 : lim ⁡ x → 0 ( x + 1 ) a − 1 a x = 1 \lim_{x\rightarrow 0}{\frac{e^{a\cdot ln{(1+x)}}-1}{x}} \\\bigstar利用前面证明的ln(x+1)\sim x,将分母进行替换(等价无穷小替换定理) \\从而得到形如另一个等价无穷小的形式: \\ \lim_{x\rightarrow0}{\frac{e^x-1}{x}}=1 \\\bigstar或者,替换分子(分子整体是符合e^x-1(e^x-1\sim x的形式)), \\这里x取值为表达式x=a\cdot\ln(x+1),从而: \\ {(1+x)^a-1} =e^{a\cdot\ln(x+1)}-1\sim a\cdot\ln(x+1) \\现在,\lim_{x\rightarrow 0}\frac{{(1+x)^a-1}}{x} =\lim_{x\rightarrow 0}{\frac{a\cdot\ln(x+1)}{x}} =\lim_{x\rightarrow 0}{a\frac{ln(x+1)}{x}}=a \\ 从而: \\ \lim_{x\rightarrow 0}{\frac{(x+1)^a-1}{ax}}=1 x0limxealn(1+x)1利用前面证明的ln(x+1)x,将分母进行替换(等价无穷小替换定理)从而得到形如另一个等价无穷小的形式:x0limxex1=1或者,替换分子(分子整体是符合ex1(ex1x的形式)),这里x取值为表达式x=aln(x+1),从而:(1+x)a1=ealn(x+1)1aln(x+1)现在,x0limx(1+x)a1=x0limxaln(x+1)=x0limaxln(x+1)=a从而:x0limax(x+1)a1=1

或者使用换元+配凑的方法

令 t = ( 1 + x ) a − 1 ; 即 , ( 1 + x ) a = t + 1 则 ln ⁡ ( 1 + x ) a = ln ⁡ ( t + 1 ) = lim ⁡ x → 0 ( 1 + x ) a − 1 x l n ( 1 + x ) a l n ( 1 + x ) a = lim ⁡ x → 0 ( 1 + x ) a − 1 x a ⋅ l n ( 1 + x ) l n ( 1 + x ) a = lim ⁡ x → 0 ( 1 + x ) a − 1 l n ( 1 + x ) a a ⋅ l n ( 1 + x ) x = lim ⁡ t → 0 t l n ( t + 1 ) ⋅ lim ⁡ x → 0 a ⋅ l n ( 1 + x ) x = 1 × a = a 令t=(1+x)^a-1;即,(1+x)^a=t+1 \\则\ln (1+x)^a=\ln (t+1) \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{ln (1+x)^a}{ln(1+x)^a}} \\ = \lim_{x\rightarrow0}{\frac{(1+x)^a-1}{x}\frac{a\cdot ln(1+x)}{ln (1+x)^a}} \\ =\lim_{x\rightarrow0}{\frac{(1+x)^a-1}{ln(1+x)^a}\frac{a\cdot ln (1+x)}{x}} \\ =\lim_{t\rightarrow0}{\frac{t}{ln(t+1)}}\cdot \lim_{x\rightarrow0}{\frac{a\cdot ln(1+x)}{x}} \\ =1\times a=a t=(1+x)a1;,(1+x)a=t+1ln(1+x)a=ln(t+1)=x0limx(1+x)a1ln(1+x)aln(1+x)a=x0limx(1+x)a1ln(1+x)aaln(1+x)=x0limln(1+x)a(1+x)a1xaln(1+x)=t0limln(t+1)tx0limxaln(1+x)=1×a=a

小结

  • 上述公式中,有-1的一般都是为了使用 1 ∞ 1^\infty 1的重要极限(第二重要极限e)
  • 其中+1不换元既可以靠近第二重要不等式
  • -1换元后转换为+1

等价无穷小之间的比较

无穷小之间不总是可以比较的(有些无穷小没有高低阶之分,也没有同阶可言)

例如:

{ f ( x ) = x s i n ( 1 x ) g ( x ) = x h ( x ) = s i n ( 1 x ) lim ⁡ x → 0 x s i n ( 1 x ) x = lim ⁡ x → 0 s i n ( 1 x ) 显然 , h ( x ) 的极限不存在 ( 但 f ( x ) & g ( x ) 单独的时候 , 都是 x → 0 过程的无穷小量 . ) \\ \begin{cases} f(x)=xsin(\frac{1}{x})\\ g(x)=x\\ h(x)=sin(\frac{1}{x}) \end{cases} \\ \lim_{x\rightarrow0}{\frac{xsin(\frac{1}{x})}{x}} =\lim_{x\rightarrow0}{sin(\frac{1}{x})} \\显然,h(x)的极限不存在(但f(x)\&g(x)单独的时候,都是x\rightarrow0过程的无穷小量.) f(x)=xsin(x1)g(x)=xh(x)=sin(x1)x0limxxsin(x1)=x0limsin(x1)显然,h(x)的极限不存在(f(x)&g(x)单独的时候,都是x0过程的无穷小量.)

常见无穷大的比较

  • 无穷大乘以无穷大得到无穷大

  • 无穷大+无穷大没有定论(鉴于无穷大区分正无穷和负无穷)

  • 无穷大 + 有界 ⇒ 无穷大 无穷大+有界\Rightarrow无穷大 无穷大+有界无穷大

  • 无穷小乘以有界 ⇒ 无穷小 无穷小乘以有界\Rightarrow无穷小 无穷小乘以有界无穷小

  • 无穷大乘以有界 ⇏ 无穷大 无穷大乘以有界\nRightarrow 无穷大 无穷大乘以有界无穷大

    • n ⋅ 0 = 0 n\cdot 0=0 n0=0

    • 譬如, f ( x ) = x ; g ( x ) = 0 ; h ( x ) = f ( x ) g ( x ) = 0 f(x)=x;g(x)=0;h(x)=f(x)g(x)=0 f(x)=x;g(x)=0;h(x)=f(x)g(x)=0

无穷大量(变量)&无界变量的关系

  • 无穷大量可以推出无界
    • 但是无界不可以推出无穷大量
    • ∀ M > 0 , ∃ N > 0 , ∣ X N ∣ > M ⇒ 无界变量 \forall M>0,\exist N>0,|X_N|>M\Rightarrow 无界变量 M>0,N>0,XN>M无界变量
    • ∀ M > 0 , ∃ N > 0 , n > N 时 , 恒有 ∣ X N ∣ > M ⇒ 无穷大 \forall M>0,\exist N>0,n>N时,恒有|X_N|>M\Rightarrow 无穷大 M>0,N>0,n>N,恒有XN>M无穷大
    • 例如 { a n } = 1 , 0 , 3 , 0 , 5 , 0 , ⋯ , 0 , 2 k + 1 \set{a_n}=1,0,3,0,5,0,\cdots,0,2k+1 {an}=1,0,3,0,5,0,,0,2k+1
      • 是无界变量但不是无穷大

f ( x ) = x + ( − 1 ) n x f(x)={x+(-1)^{n}x} f(x)=x+(1)nx

综合例题

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 复合函数和无穷小量之间的比较

    • 用到的等价无穷小包括:

      c o s x − 1 ∼ − 1 2 x 2 ; ( 1 − c o s x ∼ 1 2 x 2 ) s i n ( x ) ∼ x ; ( 类似的 s i n ( α ( x ) ) ∼ α ( x ) ) cosx-1\sim\frac{-1}{2}x^2;(1-cosx\sim \frac{1}{2}x^2) \\ sin(x)\sim x;(类似的sin(\alpha(x))\sim\alpha(x)) cosx121x2;(1cosx21x2)sin(x)x;(类似的sin(α(x))α(x))

    • 复合函数需要考虑外层函数的定义域和内层函数的值域之间的制约

    • 本题中

根据等价无穷小 , lim ⁡ x → 0 h ( x ) = lim ⁡ x → 0 s i n ( α ( x ) ) = − 1 2 , h ( x ) = s i n ( α ( x ) ) 和 y = x 是 x → 0 的同阶无穷小从而 , lim ⁡ x → 0 h ( x ) = 0 ∣ α ( x ) ∣ < π 2 为了更加通俗的理解该条件 , 去掉绝对值得到 : − π 2 < α ( x ) < π 2 指出了函数 α ( x ) 的取值范围 记 : u = α ( x ) lim ⁡ x → 0 u = u 0 根据三角坐标单位圆可知 lim ⁡ u → k π s i n ( u ) = lim ⁡ x → 0 s i n ( α ( x ) ) = lim ⁡ u → u 0 s i n ( u ) = 0 ∵ lim ⁡ u → k π s i n ( u ) = 0 ∴ u 0 = k π 根据 α ( x ) 的值域 , 可知 , u 0 ⩽ π 2 ∴ k = 0 ( u 0 = 0 , 即 lim ⁡ x → 0 α ( x ) = u 0 = 0 ) , \\根据等价无穷小,\lim_{x\rightarrow0}{h(x)}=\lim_{x\rightarrow0}{sin(\alpha(x))} =-\frac{1}{2}, \\h(x)=sin(\alpha(x))和y=x是x\rightarrow0的同阶无穷小 从而,\lim_{x\rightarrow0}{h(x)}=0 \\|\alpha(x)|<\frac{\pi}{2} 为了更加通俗的理解该条件,去掉绝对值得到: \\-\frac{\pi}{2}<\alpha(x)<\frac{\pi}{2} \\指出了函数\alpha(x)的取值范围 \\记:u=\alpha(x) \\\lim_{x\rightarrow0}{u}=u_0 \\根据三角坐标单位圆可知 \lim_{u\rightarrow k\pi}sin(u)= \\ \lim_{x\rightarrow 0}{sin(\alpha(x))} =\lim_{u\rightarrow u_0}{sin(u)}=0 \\ \because \lim_{u\rightarrow k\pi}{sin(u)}=0 \\\therefore u_0=k\pi \\根据\alpha(x)的值域,可知,u_0\leqslant\frac{\pi}{2} \\\therefore k=0 \\(u_0=0,即\lim_{x\rightarrow 0}\alpha(x)=u_0=0), 根据等价无穷小,x0limh(x)=x0limsin(α(x))=21,h(x)=sin(α(x))y=xx0的同阶无穷小从而,x0limh(x)=0α(x)<2π为了更加通俗的理解该条件,去掉绝对值得到:2π<α(x)<2π指出了函数α(x)的取值范围:u=α(x)x0limu=u0根据三角坐标单位圆可知ulimsin(u)=x0limsin(α(x))=uu0limsin(u)=0ulimsin(u)=0u0=根据α(x)的值域,可知,u02πk=0(u0=0,x0limα(x)=u0=0),


http://chatgpt.dhexx.cn/article/dj9pkgXD.shtml

相关文章

vue-router 路由的懒加载原理及方式

当打包构建应用时&#xff0c;JavaScript 包会变得非常大&#xff0c;影响页面加载。如果我们能把不同路由对应的组件分割成不同的代码块&#xff0c;然后当路由被访问的时候才加载对应组件&#xff0c;这样就更加高效了。 结合 Vue 的异步组件和 Webpack 的代码分割功能&#…

JPA/hibernate懒加载原理分析及JSON格式API反序列化时连环触发懒加载问题的解决

什么是懒加载 JPA是java持久层的API&#xff0c;也就是java官方提供的一个ORM框架&#xff0c;Spring data jpa是spring基于hibernate开发的一个JPA框架。Spring data jpa提供了大量的数据库操作接口&#xff0c;以及采用动态代理的方式做的以接口方法命名的数据库操作方式&…

react性能优化-懒加载原理

编译阶段的优化 开发阶段构建更快 loader的include和exclude属性 {test: /.(j|t)sx?$/,use: [{loader: "thread-loader",},{loader: "babel-loader",options: {presets: [["babel/preset-env", { modules: false }], //es6->es5"babe…

js图片懒加载原理、实现及节流优化

1.懒加载原理 在图片没有进入可视区域时&#xff0c;先给的src一个默认加载的图片&#xff0c;这样浏览器就不会发送请求了&#xff0c;等到图片进入可视区域再把真实的图片路径data-src给src。 2.具体实现 1. 效果 2. 代码如下&#xff1a; <style>.imgList{width:…

html图片懒加载,图片懒加载原理及实现

原理&#xff1a; 先将img标签的src链接设为同一张图片(比如空白图片)&#xff0c;然后给img标签设置自定义属性(比如 data-src),然后将真正的图片地址存储在data-src中&#xff0c;当JS监听到该图片元素进入可视窗口时&#xff0c;将自定义属性中的地址存储到src属性中。达到懒…

java懒加载的原理_每天使用 Spring 框架,那你知道 lazy-init 懒加载原理吗?

普通的bean的初始化是在容器启动初始化阶段执行的&#xff0c;而被lazy-init修饰的bean 则是在从容器里第一次进行context.getBean(“”)时进行触发。 Spring 启动的时候会把所有bean信息(包括XML和注解)解析转化成Spring能够识别的BeanDefinition并存到Hashmap里供下面的初始化…

mybatis -- 懒加载原理

目录 测试代码调试代码为什么BlogResp2是代理对象呢? 什么时候创建的代理对象呢? 让我们看一下源码懒加载的赋值流程懒加载失效的原因blogResp2的代理对象是如何构建lazyLoader属性的blogResp2的代理对象结构 测试代码 通过id 查询博客信息, 同时懒加载查询博客的所有评论信息…

js实现图片懒加载原理

有时候一个网页会包含很多的图片,例如淘宝京东这些购物网站,商品图片多只之又多,页面图片多,加载的图片就多。服务器压力就会很大。不仅影响渲染速度还会浪费带宽。比如一个1M大小的图片,并发情况下,达到1000并发,即同时有1000个人访问,就会产生1个G的带宽。 为了解决…

【转载】懒加载原理

https://blog.csdn.net/w1418899532/article/details/90515969 有时候一个网页会包含很多的图片&#xff0c;例如淘宝京东这些购物网站&#xff0c;商品图片多只之又多&#xff0c;页面图片多&#xff0c;加载的图片就多。服务器压力就会很大。不仅影响渲染速度还会浪费带宽。…

JavaScript中的懒加载——概念,作用,原理,实现步骤,以及3种原生js实现方式

1.什么是懒加载&#xff1f; 懒加载也就是延迟加载。 当访问一个页面的时候&#xff0c;先把img元素或是其他元素的背景图片路径替换成一张大小为1*1px图片的路径&#xff08;这样就只需请求一次&#xff0c;俗称占位图&#xff09;&#xff0c; 只有当图片出现在浏览器的可…

懒加载的原理及实现

1.懒加载概念 对于页面有很多静态资源的情况下&#xff08;比如网商购物页面&#xff09;&#xff0c;为了节省用户流量和提高页面性能&#xff0c;可以在用户浏览到当前资源的时候&#xff0c;再对资源进行请求和加载。 2.懒加载实现原理 2.1监听onscroll事件判断资源位置 …

为什么单线程比多线程快

首先我们先介绍一下什么是进程什么是线程 进程&#xff1a; 当一个程序开始运行时&#xff0c;它就是一个进程&#xff0c;进程包括运行中的程序和程序所使用到的内存和系统资源。而一个进程又是由多个线程所组成的。 线程&#xff1a; 是进程的一个执行单元&#xff0c;是…

Redis6.0新特性、剖析线程模型(单线程和多线程)

一. Redis6.0 新特性 1. 多线程IO redis6.0引入多线程IO&#xff0c;只是用来处理网络数据的读写和协议的解析&#xff0c;而执行命令依旧是单线程&#xff0c;所以不需要去考虑set/get、事务、lua等的并发问题。&#xff08;详细的线程模型见后面&#xff09; 2. ACL精细化权…

「Redis线程模型」Redis的单线程与多线程

「Redis线程模型」Redis的单线程与多线程 文章目录 「Redis线程模型」Redis的单线程与多线程[toc]Redis 是单线程吗&#xff1f;Redis 单线程模式是怎样的&#xff1f;Redis 采用单线程为什么还这么快&#xff1f;Redis 6.0 之前为什么使用单线程&#xff1f;Redis 6.0 之后为什…

Redis 是单线程的正确理解

一、为什么Redis是单线程的 1️⃣官方答案 因为 Redis 是基于内存的操作&#xff0c;CPU不是 Redis 的瓶颈。Redis 的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现&#xff0c;而且 CPU 不会成为瓶颈&#xff0c;那就顺理成章地采用单线程的方案了。 2️⃣…

Python单线程/多线程

Python里的多线程是假的多线程&#xff0c;不管有多少核&#xff0c;同一时间只能在一个核中进行操作&#xff01; 利用Python的多线程&#xff0c;只是利用CPU上下文切换的优势&#xff0c;看上去像是并发&#xff0c;其实只是单线程。 import threading import timedef tes…

为什么 Redis 是单线程的

文章目录 3.6 为什么 Redis 是单线程的3.6.1 Redis的单线程理解3.6.2 单线程的 Redis 为何高并发快 3.6 为什么 Redis 是单线程的 参考地址&#xff1a;https://blog.csdn.net/ChineseSoftware/article/details/122562476 官方答案 因为 Redis 是基于内存的操作&#xff0c;CP…

Python的单线程和多线程

1.发展背景 2.进程和线程的区别 线程是程序执行的最小单位&#xff0c;而进程是操作系统分配资源的最小单位&#xff1b;一个进程由一个线程组成&#xff0c;线程是一个进程中代码的不同执行路线&#xff1b;进程之间相互独立&#xff0c;但同一进程下的各个线程之间共享程序的…

JavaNIO——单线程(笔记)

文章目录 一、 三大组件1.1 Channel & Buffer1.2 Selector 二、 ByteBuffer字节缓存2.1 结构2.2 堆内存与直接内存2.3 读与写2.4 Scattering Reads与Gathering Writes2.5 简单处理黏包与半包 三、FileChannel文件编程3.1 读取3.2 写入3.3 关闭3.4 位置3.5 大小3.6 强制写入…

单线程简介

单线程顾名思义&#xff0c;就是只有一个线程&#xff0c;默认情况下&#xff0c;系统为应用程序分配一个主线程&#xff0c;该线程执行程序中以Main方法开始和结束的代码。线程具有生命周期&#xff0c;它包含3个状态&#xff0c;分别为出生状态、就绪状态和运行状态。 出生状…