HashMap面试,看这一篇就够了

article/2025/11/9 13:13:52

历史热门文章:

  1. 七种方式教你在SpringBoot初始化时搞点事情
  2. Java序列化的这三个坑千万要小心
  3. 可以和面试官聊半个小时的volatile原理
  4. Java中七个潜在的内存泄露风险,你知道几个?
  5. JDK 16新特性一览
  6. 啥?用了并行流还更慢了
  7. InnoDB自增原理都搞不清楚,还怎么CRUD?

前言

在一场面试中最能打动面试官的其实是细节,候选人对细节的了解程度决定了留给面试官的印象到底是“基础扎实”还是“基础薄弱”,如果候选人能够举一反三主动阐述自己对一些技术细节的理解和总结,那无疑是面试过程中的一大亮点。HashMap是一个看着简单,但其实里面有很多技术细节的数据结构,在一场高端的面试中即使不问任何红黑树(Java 8HashMap引入了红黑树来处理极端情况下的哈希碰撞)相关的问题,也会有很多的技术细节值得挖掘。

把书读薄

Java 7HashMap实现有1000多行,到了Java 8中增长为2000多行,虽然代码行数不多,但代码中有比较多的位运算,以及其他的一些细枝末节,导致这部分代码看起来很复杂,理解起来比较困难。但是如果我们跳出来看,HashMap这个数据结构是非常基础的,我们大脑中首先要有这样一幅图:

img

图片来源:https://www.cnblogs.com/tianzhihensu/p/11972780.html

这张图囊括了HashMap中最基础的几个点:

  1. JavaHashMap的实现的基础数据结构是数组,每一对key->value的键值对组成Entity类以双向链表的形式存放到这个数组中
  2. 元素在数组中的位置由key.hashCode()的值决定,如果两个key的哈希值相等,即发生了哈希碰撞,则这两个key对应的Entity将以链表的形式存放在数组中
  3. 调用HashMap.get()的时候会首先计算key的值,继而在数组中找到key对应的位置,然后遍历该位置上的链表找相应的值。

当然这张图中没有体现出来的有两点:

  1. 为了提升整个HashMap的读取效率,当HashMap中存储的元素大小等于桶数组大小乘以负载因子的时候整个HashMap就要扩容,以减小哈希碰撞,具体细节我们在后文中讲代码会说到
  2. Java 8中如果桶数组的同一个位置上的链表数量超过一个定值,则整个链表有一定概率会转为一棵红黑树。

整体来看,整个HashMap中最重要的点有四个:初始化数据寻址-hash方法数据存储-put方法,扩容-resize方法,只要理解了这四个点的原理和调用时机,也就理解了整个HashMap的设计。

把书读厚

在理解了HashMap的整体架构的基础上,我们可以试着回答一下下面的几个问题,如果对其中的某几个问题还有疑惑,那就说明我们还需要深入代码,把书读厚。

  1. HashMap内部的bucket数组长度为什么一直都是2的整数次幂
  2. HashMap默认的bucket数组是多大
  3. HashMap什么时候开辟bucket数组占用内存
  4. HashMap何时扩容?
  5. 桶中的元素链表何时转换为红黑树,什么时候转回链表,为什么要这么设计?
  6. Java 8中为什么要引进红黑树,是为了解决什么场景的问题?
  7. HashMap如何处理keynull的键值对?

new HashMap()

JDK 8中,在调用new HashMap()的时候并没有分配数组堆内存,只是做了一些参数校验,初始化了一些常量

public HashMap(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " +loadFactor);this.loadFactor = loadFactor;this.threshold = tableSizeFor(initialCapacity);
}static final int tableSizeFor(int cap) {int n = cap - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

tableSizeFor的作用是找到大于cap的最小的2的整数幂,我们假设n(注意是n,不是cap哈)对应的二进制为000001xxxxxx,其中x代表的二进制位是0是1我们不关心,

n |= n >>> 1;执行后n的值为:

image-20210403000630081

可以看到此时n的二进制最高两位已经变成了1(1和0或1异或都是1),再接着执行第二行代码:

可见n的二进制最高四位已经变成了1,等到执行完代码n |= n >>> 16;之后,n的二进制最低位全都变成了1,也就是n = 2^x - 1其中x和n的值有关,如果没有超过MAXIMUM_CAPACITY,最后会返回一个2的正整数次幂,因此tableSizeFor的作用就是保证返回一个比入参大的最小的2的正整数次幂。

JDK 7中初始化的代码大体一致,在HashMap第一次put的时候会调用inflateTable计算桶数组的长度,但其算法并没有变:

// 第一次put时,初始化table
private void inflateTable(int toSize) {// Find an power of 2 >= toSizeint capacity = roundUpToPowerOf2(toSize);threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);table = new Entry(capacity);initHashSeedAsNeeded(capacity);
}

这里我们也回答了开头提出来的问题:

HashMap什么时候开辟bucket数组占用内存?答案是在HashMap第一次put的时候,无论Java 8还是Java 7都是这样实现的。这里我们可以看到两个版本的实现中,桶数组的大小都是2的正整数幂,至于为什么这么设计,看完后文你就明白了。

hash

HashMap这个特殊的数据结构中,hash函数承担着寻址定址的作用,其性能对整个HashMap的性能影响巨大,那什么才是一个好的hash函数呢?

  • 计算出来的哈希值足够散列,能够有效减少哈希碰撞
  • 本身能够快速计算得出,因为HashMap每次调用getput的时候都会调用hash方法

下面是Java 8中的实现:

static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这里比较重要的是(h = key.hashCode()) ^ (h >>> 16),这个位运算其实是将key.hashCode()计算出来的hash值的高16位与低16位继续异或,为什么要这么做呢?

我们知道hash函数的作用是用来确定key在桶数组中的位置的,在JDK中为了更好的性能,通常会这样写:

index =(table.length - 1) & key.hash();

回忆前文中的内容,table.length是一个2的正整数次幂,类似于000100000,这样的值减一就成了000011111,通过位运算可以高效寻址,这也回答了前文中提到的一个问题,HashMap内部的bucket数组长度为什么一直都是2的整数次幂?好处之一就是可以通过构造位运算快速寻址定址。

回到本小节的议题,既然计算出来的哈希值都要与table.length - 1做与运算,那就意味着计算出来的hash值只有低位有效,这样会加大碰撞几率,因此让高16位与低16位做异或,让低位保留部分高位信息,减少哈希碰撞。

我们再看Java 7中对hash的实现:

final int hash(Object k) {int h = hashSeed;if (0 != h && k instanceof String) {return sun.misc.Hashing.stringHash32((String) k);}h ^= k.hashCode();// This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
}

Java 7中为了避免hash值的高位信息丢失,做了更加复杂的异或运算,但是基本出发点都是一样的,都是让哈希值的低位保留部分高位信息,减少哈希碰撞。

put

Java 8put这个方法的思路分为以下几步:

  1. 调用keyhashCode方法计算哈希值,并据此计算出数组下标index
  2. 如果发现当前的桶数组为null,则调用resize()方法进行初始化
  3. 如果没有发生哈希碰撞,则直接放到对应的桶中
  4. 如果发生哈希碰撞,且节点已经存在,就替换掉相应的value
  5. 如果发生哈希碰撞,且桶中存放的是树状结构,则挂载到树上
  6. 如果碰撞后为链表,添加到链表尾,如果链表超度超过TREEIFY_THRESHOLD默认是8,则将链表转换为树结构
  7. 数据put完成后,如果HashMap的总数超过threshold就要resize

具体代码以及注释如下:

public V put(K key, V value) {// 调用上文我们已经分析过的hash方法return putVal(hash(key), key, value, false, true);
}final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)// 第一次put时,会调用resize进行桶数组初始化n = (tab = resize()).length;// 根据数组长度和哈希值相与来寻址,原理上文也分析过if ((p = tab[i = (n - 1) & hash]) == null)// 如果没有哈希碰撞,直接放到桶中tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))// 哈希碰撞,且节点已存在,直接替换e = p;else if (p instanceof TreeNode)// 哈希碰撞,树结构e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {// 哈希碰撞,链表结构for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);// 链表过长,转换为树结构if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))// 如果节点已存在,则跳出循环break;// 否则,指针后移,继续后循环p = e;}}if (e != null) { // existing mapping for key// 对应着上文中节点已存在,跳出循环的分支// 直接替换V oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)// 如果超过阈值,还需要扩容resize();afterNodeInsertion(evict);return null;
}

相比之下Java 7中的put方法就简单不少

public V put(K key, V value) {// 如果 key 为 null,调用 putForNullKey 方法进行处理  if (key == null)return putForNullKey(value);int hash = hash(key.hashCode());int i = indexFor(hash, table.length);for (Entry<K, V> e = table[i]; e != null; e = e.next) {Object k;  if (e.hash == hash && ((k = e.key) == key|| key.equals(k))) {V oldValue = e.value;e.value = value;e.recordAccess(this);return oldValue;}}modCount++;addEntry(hash, key, value, i);return null;
}void addEntry(int hash, K key, V value, int bucketIndex) {Entry<K, V> e = table[bucketIndex];     // ①  table[bucketIndex] = new Entry<K, V>(hash, key, value, e);if (size++ >= threshold)resize(2 * table.length);    // ②  
}

这里有一个小细节,HashMap允许putkey为null的键值对,但是这样的键值对都放到了桶数组的第0个桶中。

resize()

resize是整个HashMap中最复杂的一个模块,如果在put数据之后超过了threshold的值,则需要扩容,扩容意味着桶数组大小变化,我们在前文中分析过,HashMap寻址是通过index =(table.length - 1) & key.hash();来计算的,现在table.length发生了变化,势必会导致部分key的位置也发生了变化,HashMap是如何设计的呢?

这里就涉及到桶数组长度为2的正整数幂的第二个优势了:当桶数组长度为2的正整数幂时,如果桶发生扩容(长度翻倍),则桶中的元素大概只有一半需要切换到新的桶中,另一半留在原先的桶中就可以,并且这个概率可以看做是均等的。

image-20210403103507368

通过这个分析可以看到如果在即将扩容的那个位上key.hash()的二进制值为0,则扩容后在桶中的地址不变,否则,扩容后的最高位变为了1,新的地址也可以快速计算出来newIndex = oldCap + oldIndex;

下面是Java 8中的实现:

final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {// 如果oldCap > 0则对应的是扩容而不是初始化if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}// 没有超过最大值,就扩大为原先的2倍else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}else if (oldThr > 0) // initial capacity was placed in threshold// 如果oldCap为0, 但是oldThr不为0,则代表的是table还未进行过初始化newCap = oldThr;else {               // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {// 如果到这里newThr还未计算,比如初始化时,则根据容量计算出新的阈值float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {// 遍历之前的桶数组,对其值重新散列Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)// 如果原先的桶中只有一个元素,则直接放置到新的桶中newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // preserve order// 如果原先的桶中是链表Node<K,V> loHead = null, loTail = null;// hiHead和hiTail代表元素在新的桶中和旧的桶中的位置不一致Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;// loHead和loTail代表元素在新的桶中和旧的桶中的位置一致newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;// 新的桶中的位置 = 旧的桶中的位置 + oldCap, 详细分析见前文newTab[j + oldCap] = hiHead;}}}}}return newTab;
}

Java 7中的resize方法相对简单许多:

  1. 基本的校验之后new一个新的桶数组,大小为指定入参
  2. 桶内的元素根据新的桶数组长度确定新的位置,放置到新的桶数组中
void resize(int newCapacity) {Entry[] oldTable = table;int oldCapacity = oldTable.length;if (oldCapacity == MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return;}Entry[] newTable = new Entry[newCapacity];boolean oldAltHashing = useAltHashing;useAltHashing |= sun.misc.VM.isBooted() &&(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);boolean rehash = oldAltHashing ^ useAltHashing;transfer(newTable, rehash);table = newTable;threshold = (int) Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;for (Entry<K, V> e : table) {//链表跟table[i]断裂遍历,头部往后遍历插入到newTable中while (null != e) {Entry<K, V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);e.next = newTable[i];newTable[i] = e;e = next;}}
}

总结

在看完了HashMapJava 8Java 7的实现之后我们回答一下前文中提出来的那几个问题:

  1. HashMap内部的bucket数组长度为什么一直都是2的整数次幂

    答:这样做有两个好处,第一,可以通过(table.length - 1) & key.hash()这样的位运算快速寻址,第二,在HashMap扩容的时候可以保证同一个桶中的元素均匀的散列到新的桶中,具体一点就是同一个桶中的元素在扩容后一半留在原先的桶中,一半放到了新的桶中。

  2. HashMap默认的bucket数组是多大

    答:默认是16,即时指定的大小不是2的整数次幂,HashMap也会找到一个最近的2的整数次幂来初始化桶数组。

  3. HashMap什么时候开辟bucket数组占用内存

    答:在第一次put的时候调用resize方法

  4. HashMap何时扩容?

    答:当HashMap中的元素熟练超过阈值时,阈值计算方式是capacity * loadFactor,在HashMaploadFactor是0.75

  5. 桶中的元素链表何时转换为红黑树,什么时候转回链表,为什么要这么设计?

    答: 当同一个桶中的元素数量大于等于8的时候元素中的链表转换为红黑树,反之,当桶中的元素数量小于等于6的时候又会转为链表,这样做的原因是避免红黑树和链表之间频繁转换,引起性能损耗

  6. Java 8中为什么要引进红黑树,是为了解决什么场景的问题?

    答:引入红黑树是为了避免hash性能急剧下降,引起HashMap的读写性能急剧下降的场景,正常情况下,一般是不会用到红黑树的,在一些极端场景下,假如客户端实现了一个性能拙劣的hashCode方法,可以保证HashMap的读写复杂度不会低于O(lgN)

    public int hashCode() {return 1;
    }
    
  7. HashMap如何处理keynull的键值对?

    答:放置在桶数组中下标为0的桶中
    在这里插入图片描述


http://chatgpt.dhexx.cn/article/d0fRmZDr.shtml

相关文章

java中HashMap原理

1、为什么用HashMap&#xff1f; HashMap是一个散列桶&#xff08;数组和链表&#xff09;&#xff0c;它存储的内容是键值对(key-value)映射HashMap采用了数组和链表的数据结构&#xff0c;能在查询和修改方便继承了数组的线性查找和链表的寻址修改HashMap是非synchronized&a…

HashMap的实现原理

1. HashMap概述 HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作&#xff0c;并允许使用null值和null键。此类不保证映射的顺序&#xff0c;特别是它不保证该顺序恒久不变。 在java编程语言中&#xff0c;最基本的结构就是两种&#xff0c;一个…

软件测试用例分析和用例设计

测试用例的概念 测试用例&#xff08;test case&#xff09;&#xff0c;也叫测试案例&#xff0c;是为了达到一个最佳的测试效果或者高效的发现软件中的隐藏错误&#xff08;缺陷&#xff09;而精心设计的包括场景步骤和数据。 通用的定义&#xff1a;是关于一个功能验证时候…

软件测试用例设计练习

1、完成163邮箱注册用例的编写 邮箱地址&#xff1a;6~18个字符&#xff0c;可使用字母、数字、下划线&#xff0c;需要以字母开头 密码&#xff1a;8~16个字符&#xff0c;大、小写字母、数字、标点符号&#xff0c;3种或以上组合 2、需求&#xff1a;输入三条边&#xff…

软件测试用例详细规范

软件测试用例详细规范 为什么编写测试用例详细测试用例模板测试用例字段介绍用例操作步骤用例预期结果&#xff1a; 测试用例录入原则&#xff1a;测试用例设计步骤测试用例案例&#xff1a;测试用例校验点&#xff1a; 为什么编写测试用例 我也不知道&#xff0c;自己百度 详…

软件测试——测试用例设计方法

1、测试用例定义 测试用例又叫test case&#xff0c;是为某个特殊目标而编制的一组测试输入&#xff0c;执行条件以及预期结果&#xff0c;以便测试某个程序路径或核实是否满足某个特定需求。 2、测试用例的特性 有效性&#xff1a;测试用例能够被使用&#xff0c;且被不同人…

接口测试用例怎么写?

测试流程 需求规格说明书--测试计划--测试用例--用例评审--开发 接口文档--接口分析--接口用例设计--评审--接口测试执行&#xff08;关注数据库&#xff09;--前后端对接 系统界面测试--测试结束 如何设计接口测试用例&#xff1f; 1.接口正常调用&#xff0c;先要能跑通…

软件测试 - 用例篇

回顾上一篇博客主要内容:软件测试 - 基础篇 1: 软件测试的流程是什么? 需求分析,测试计划,测试设计/测试开发,测试执行,测试报告 需求分析 分析需求,验证需求的正确性和合理性,从需求中提取出测试项 测试计划 要考虑测试人数,测试环境,测试时间,测试设备等 测试设计/测试开发 …

软件测试用例优先级,软件测试用例的优先级划分方法

随着互联网的不断发展&#xff0c;程序员对于软件品质以及运行状况等参数关注程度也在提高&#xff0c;而今天我们就一起来了解一下&#xff0c;在划分测试用例优先级的时候都有哪些划分方法可以使用。 没有软件系统是完美的&#xff0c;任何系统都有BUGS。但是每一次得迭代都有…

软件测试:测试用例

一、通用测试用例八要素  1、用例编号&#xff1b;  2、测试项目&#xff1b;  3、测试标题&#xff1b;  4、重要级别&#xff1b;  5、预置条件&#xff1b;  6、测试输入&#xff1b;  7、操作步骤&#xff1b;  8、预期输出 二、具体分析通用测试用例八要…

【软件测试】测试用例的设计方法

文章目录 1. 测试用例的概念2. 设计测试用例的好处3. 基于需求设计测试用例3.1 功能性需求3.2 非功能性需求 4. 设计测试用例的具体方法4.1 等价类4.2 边界值4.3 错误猜测法4.4 场景设计法4.5 因果图法4.6 正交法 5. 测试用例的粒度 1. 测试用例的概念 测试用例就是测试人员向…

如何写好测试用例

目录 前言 为什么要写用例&#xff1f; 那怎么写好测试用例呢&#xff1f; 那么我们日常测试中&#xff0c;如果用xmind梳理用例结构注意哪些点呢&#xff1f; 结语 前言 经历过校招或社招的测试同学&#xff0c;都会被问到测试用例的设计、使用方法&#xff0c;以及用例的…

软件测试——测试用例设计测试分类详解

文章目录 1. 测试用例的基本要素2. 测试用例的设计方法2.1 基于需求设计测试用例2.11 功能性需求测试分析2.12 非功能性需求测试分析 2.2 具体的设计测试用例的方法等价类&#xff08;非常重要&#xff09;边界值错误猜测法场景法因果图法正交法 3. 测试分类3.1 按照测试对象划…

软件测试-如何写好测试用例

软件测试-如何写好测试用例 一、课程介绍前置知识点 二、测试用例与编写流程介绍测试用例介绍需求分析与测试点编写测试用例编写注意 三、 测试用例编写&#xff0c;评审与管理测试用例编写方法3-2 慕课网注册功能测试用例编写 (13:25)3-3 慕课网搜索&#xff0c;APP下载功能测…

测试用例应该怎么写

一、背景 有些测试同学&#xff0c;写测试用例的时候&#xff0c;直接就是将需求文档上的内容抄一遍&#xff0c;转换成测试用例的格式。没有加入任何自己的思考和理解&#xff0c;没有融入任何测试方法论。测试完全依赖于需求文档的质量&#xff0c;依赖于产品经理保姆级的服…

【软件测试】测试用例设计

目录 &#x1f337;1. 测试用例的基本要素 &#x1f337;2. 测试用例的设计方法 &#x1f333;2.1 基于需求进行测试用例的设计 ⭐️&#xff08;1&#xff09;功能需求测试分析 ⭐️&#xff08;2&#xff09;非功能需求测试分析 &#x1f333;2.2 具体的设计方法 &#…

软件测试用例设计规范

文章目录 1 目的2 规范内容2.1 设计原则2.1.1 可执行性2.1.2 可维护性2.1.3 可代表性2.1.4 可判定性 2.2 必要元素2.2.1 用例包和用例对象名命2.2.2 测试目的2.2.3 测试优先级2.2.4 测试环境2.2.5 前提条件2.2.6 后置关联2.2.7 用例状态 2.3 综合策略2.3.1 必要的边界值分析2.3…

软件测试——测试用例

目录 1.测试用例的基本要素 2.测试用例的设计方法 2.1基于需求的设计方法&#xff08;Requirements-Based Testing&#xff0c;RBT&#xff09; 2.2等价类划分法 2.3边界分析法 2.4因果图 2.5正交排列 2.6场景设计法 2.7错误猜测法…

软件测试(测试用例)—写用例无压力

软件测试——用例篇 文章目录 软件测试——用例篇一、概念二、测试用例总体设计方案1、等价类 ☆2、边界值 ☆2.1 边界值法设计用例步骤 3、判定表 ☆4、因果图5、场景设计法 ☆6、错误猜测法7、正交排列三、实际操作中注意的点3.1测试用例的注意点 四、缺陷介绍1、缺陷的判定标…

软件测试用例

测试用例 为什么要写测试用例测试用例的基本要素QQ登录的测试用例功能正常时异常时 界面易用性可移植性性能 具体的设计测试用例的方法等价类边界值错误猜测法场景设计法因果图法正交排列 测试用例的有效性 为什么要写测试用例 测试用例是测试执行的依据测试用例可以复用&…