Java 的八大基本类型及其包装类型(超级详细)

article/2025/8/18 4:08:18

        Java 中有八种内置的基本数据类型,他们分别是 byte、short、int、long、float、double、char 和 boolean,其中,byte、short、int 和 long 都是用来表示整数,float 和 double 是用来表示浮点数的,那它们之间有什么区别和联系呢?除了这八种基本类型(primitive type)外,其余的类型都是引用类型(reference type)。但是包装类型(wrapper class) Integer 和 Long 也可以用来表示整数,那它们与 int 和 long 又有什么区别和联系呢?这八种基本类型之间的运算关系又是怎样的呢?

一、基本类型

基本类型的表示范围

八种基本类型中,char 类型是用来表示字符的,boolean 类型是用来表示布尔值的,除此之外的 6 种都是用来表示数字的。byte、short、int 和 long 是用来表示整数的,float 和 double 是用来表示浮点数的。下面是每一种类型能表示的范围:

基本类型位数最小值最大值
byte8-128 (-2^7)127 (2^7-1)
short16-32,768 (-2^15)32,767 (2^15-1)
int32-2,147,483,648 (-2^31)2,147,483,647 (2^31-1)
long64-9,223,372,036,854,775,808 (-2^63)9,223,372,036,854,775,807 (2^63-1)
float32

1.4E-45 (0x0.000002P-126)

3.4028235E38 (0x1.fffffeP+127)
double64

4.9E-324 (0x0.0000000000001P-1022)

1.7976931348623157E308 (0x1.fffffffffffffP+1023)

char16\u0000 (0)\uFFFF (65,535)
boolean1falsetrue

定义变量时超过对应数据类型最大的表示范围的话将报错。位数越大,单个该数据类型的变量所占用的内存就越多。

每一种类型的最大最小值都保存在了其对应包装类型的属性中,如 Integer.MAX_VALUE 的值为 2147483647,关于包装类型,下面会做详细说明。

类型的默认值

每一种类型都有一个默认值,除基本类型外,其他的类型的默认值都是 null,因为它们都是引用类型。整数默认为 int 类型,浮点数默认为 double 类型。

类型默认值
byte0
short0
int0
long0L
float0.0f
double0.0
char'\u0000'
booleanfalse
String、Integer 等引用类型null

当我们定义静态的基本类型变量时,它们将采用默认值:

public class Test {static byte b;static short s;static int i;static long l;static float f;static double d;static char c;static boolean bool;static String str;public static void main(String[] args) {System.out.println("byte " + b);  // byte 0System.out.println("short " + s);  // short 0System.out.println("long " + l);  // long 0System.out.println("int " + i);  // int 0System.out.println("float " + f);  // float 0.0System.out.println("double " + d);  // double 0.0System.out.println("char " + c);  // char '\u0000' (这个显示不出来)System.out.println("boolean " + bool);  // boolean falseSystem.out.println("String " + str);  // String null}
}

类型之间的转换

类型之间的转换有自动类型转换和强制类型转换两种。自动类型转换也称隐式转换,是编译器自动进行的,强制类型转换称为显式转换,是写代码时显式地完成的。

自动类型转换(隐式转换) 

在八种基本数据类型中,除开 boolean 类型,其他的七种都是可以互相进行运算的(如加减法运算)。不同的类型在进行运算的时候,低位的数据类型会向高位的转化,最后的计算结果将是整个运算过程中数据类型位数最大的,这就是自动类型转换。

int a = 1;
long b = 2;
int c = a + b;  // Error
long c = a + b;  // Right

但要注意一点,比 int 类型数据小的数据类型在做运算的时候,会转换成 int 类型然后再做运算,尽管计算结果能被 byte 或 short 类型表示:

short c = 1, d = 2;
short e = c + d;  // Error
int e = c + d;  // Right

自动类型转换的规则可以总结为如下: 

若有一个变量是 double 类型,则另一个也会被隐式转换为 double 类型;否则,若有一个变量是 float 类型,则另一个也会被隐式转换为 float 类型;否则,若有一个变量是 long 类型,则另一个也会被隐式转换为 long 类型;否则,若有一个变量是 int 类型,则另一个也会被隐式转换为 int 类型。特别的,boolean 类型无法转换(包括自动类型转换和强制类型转换)

即,自动类型转换优先级为:double > float > long > int > short = char = byte (boolean 不可转换)

注意:在 short、byte 和 char 之间不会发生自动类型转换,它们运算时都会先转换成 int 类型,结果最终也是 int 类型,所以前面说,比 int 还小的类型在运算时会被自动转换为 int 类型。

强制类型转换(显式转换)

强制类型转换就是在程序中显式地将一个变量从某一类型强制转换成另一类型。从小位类型到大位类型的转换是向上转换,一般这是没有问题的,但反过来,从大位类型转换到小位类型,即向下转换,是有可能发生数据溢出或者精度损失的。

int a = 32768;
float b = 3.1415926f;
System.out.println((long)a);  // Right
// Output: 1System.out.println((short)a);  // overflow
// Output: -32768System.out.println((int)b);  // loss of accuracy
// Output: 3

数据溢出和精度损失

这里关于数据溢出和精度损失做一些简单的说明。

数据溢出

数据溢出之后变量也还是有值的,程序也不会报错,那溢出后的值是如何计算出来的?这实际上和数据存储的规则有关,涉及到原码、反码和补码等知识,这里不会详细说明这个规则,我们只需要一张图便能知道溢出后的值是如何计算得到的。

数据溢出解释图(以 short 类型为例)

举个例子,int 类型变量值为 131073,在强制类型转换为 short 类型后值就变为了 1。我们可以这样理解,上面的图是 short 类型变量所有的取值,从 0 开始,131073 一个一个去对应,到 32768 时发生数据溢出,变成了 -32768,继续顺时针旋转去对应每个数,最会对应两圈多两个数,然后 131073 对应到第三圈的第二个数字 1,因此,强制类型转换数据溢出后的结果为 1。

注意:131073 = 65536 * 2 + 1

int a = 131073;
System.out.println((short)a);  // Output: 1

精度损失

在数据存储长度比较长的数据转换为数据存储长度较短的类型时,就可能会发生精度损失,因为要把长数据变成短数据只能将数据后面多余的部分截断才行。因为转换方式采用的是截断多余的,因此我们可以认为当浮点型数据转换为整型数据时是做了一个向零取整的操作(直接舍去小数)。

float a = 3.14f, b = -3.14f;
System.out.println((int)a);  // Output: 3
System.out.println((int)b);  // Output: -3

隐含强制类型转换

除了前面提到的两种,还有一种隐含的强制类型转换,一个整数数字(int 表示范围之内的)会被隐含地转换成 int 类型,一个浮点数字会被隐含地转换成 double 类型。这也解释了为什么前面说整数默认是 int 类型,浮点数的默认类型是 double 类型了。所以,以后在用 float 类型时一定要在后面加上字母 f 或 F,long 类型后面要加上字母 l 或者 L

二、包装类型

基本数据类型并不是对象,但为了编程的方便,Java 还是引入了它们,也就是前面提到的八个基本类型,但要将其作为对象来操作的话,还是要用这八个基本类型对应的包装类型(wrapper class)。这个包装类型就是 Java 对基本类型的封装,使其能作为对象使用,它们与其他的类型并没有什么太多的区别,都是引用类型(reference type)。

基本类型包装类型

byte

Byte
shortShort
intInteger
longLong
floatFloat
doubleDouble
charCharacter
booleanBoolean

在 Java5 的时候引入了自动装箱/拆箱机制,使得基本类型和对应的包装类型之间可以相互转换。

基本类型和包装类型的区别

基本类型和包装类型在使用时所表示的值是一样的,表示的范围也是对应的,当 int 类型在转换为 Integer 类型的时候,实际上是调用了 Integer 的 valueOf 方法:

Integer a = 1;
Integer a = Integer.valueOf(1);
// the two are equivalent

下面我们列出基本类型和包装类型的一些区别:

  • 基本类型不是对象,而包装类型是对象(有属性和方法);
  • 基本类型不需要实例化,而包装类型需要实例化;
  • 基本类型是直接存储的值,而包装类型是对实例对象的引用;
  • 基本类型有特殊的默认值(如 int 的默认值是 0),而包装类型都是 null;
  • 基本类型所占用的内存比较少,包装类型占用内存较大;
  • 同一基本类型相同值的不同变量的内存地址一样,但实例化得到的同一包装类型相同值的不同变量的内存地址不一样;
  • 基本类型的运算是直接进行的,而包装类型的运算要先拆箱为基本类型才能进行运算。

对象有属性和方法,前面提到的 Integer.MAX_VALUE 就是包装类型的一个属性,上面提到的 Integer.valueOf() 就是一个方法,而基本类型 int 是没有这些的。

基本类型的值都是直接储存的,所以同一个基本类型、相同值的不同变量的地址是一样的:

int a = 1, b = 1;
System.out.println(a == b);  // Output: true

包装类型都是对象实例化的引用,一般每个对象都拥有不同的内存空间,它们的内存地址也就不一样:

Integer a = new Integer(100);
Integer b = new Integer(100);
System.out.println(a == b);  // Output: false

valueOf 方法的缓存机制

如果一个 Integer 实例对象是由基本类型转换而来的,值处于 -128 ~ 127 之间时,之前的代码输出结果就为 true 。是因为转换时调用的 valueOf 方法有一个缓存机制。 这个判断范围 -128 ~ 127 是默认的,可以在 JVM 提供的配置 (-XX:AutoBoxCacheMax) 进行修改。

为什么要有这个缓存机制?这是因为处于这个区间的值比较小,而且又比较常用,因此编译器就提前将其缓存了,需要时就直接从缓存里拿,既能提高速度,又能在同样值的包装类型较多的时候节省内存。所以,两个值在 -128 ~ 127 之间,且由基本类型 int 转换而来的 Integer 就是同一个对象。这对于包装类型 Byte、Short 和 Long 也是一样的。

Integer a = 100, b = 100;
System.out.println(a == b);  // Output: trueInteger c = 128, d = 128;
System.out.println(c == d);  // Output: false

与此类似的还有包装类型 Boolean,它一共就只有两种可能,true 和 false,因此也被提前缓存了。包装类型 Character 在 '\u0000' ~ '\u007F' 之间的值(0 ~ 127)也是被提前缓存了。不过包装类型 Float 和 Double 的 valueOf 方法就没有这个缓存机制了。

基本类型和包装类型的联系

为什么包装类型叫做“包装类型”呢?顾名思义,就是对基本类型的一个封装,从名字里我们就能知道,基本类型和包装类型之间的实际上有个装箱与拆箱的关系。

直接由基本类型 int 转化而来的 Integer 对象是对 int 类型的装箱操作,而由 Integer 对象转换来的 int 类型变量就是对 Integer 对象的拆箱操作。

Integer a = 1;  // 装箱
Integer a = Integer.valueOf(1);  // 等价形式int b = a;  // 拆箱
int b = a.intValue();  // 等价形式

实例化生成的 Integer 类型变量与基本类型转化而来的 integer 类型变量尽管值相同,但内存地址并不相同(非 new 生成的 Integer 对象指向 Java 常量池中的对象),不是同一个对象,所以在比较的时候输出 false。但是当二者与基本类型相同值的变量去比较时却都输出 true。

Integer a = 1;
Integer b = new Integer(1);
System.out.println(a == b);  // Output: falseint c = 1;
System.out.println(c == a);  // Output: true
System.out.println(c == b);  // Output: true

这是因为包装类型 Integer 与基本类型在比较的时候会自动拆箱为 int 类型,然后再去比较,这样所得到的结果就是一样的,因此输出 true。


http://chatgpt.dhexx.cn/article/bOasB6Nv.shtml

相关文章

Java 八大包装类(超详细!)

一、8种基本数据类型对应的包装类型名 基本数据类型包装类型bytejava.lang.Byte(父类Number)shortjava.lang.Short(父类Number)intjava.lang.Integer(父类Number)longjava.lang.Long(父类Numbe…

关于InnoDB的读写锁类型以及加锁方式

(本文为了方便,英文关键词都都采用小写方式,相关知识点会简单介绍,争取做到可以独立阅读) 文章开始我会先介绍本文需要的知识点如下: innodb的主键索引(一级索引)和二级索引&#x…

C++线程中的几类锁

C线程中的几类锁 多线程中的锁主要有五类:互斥锁、条件锁、自旋锁、读写锁、递归锁。一般而言,所得功能与性能成反比。而且我们一般不使用递归锁(C提供std::recursive_mutex),这里不做介绍。 互斥锁 互斥锁用于控制多…

Oracle - 锁

锁概念 锁出现在数据共享的环境中,它是一种机制,在访问相同资源时,可以防止事务之间的破坏性交互。例如,在多个会话同时操作某表时,优先操作的会话需要对其锁定。 事务的分离性要求当前事务不能影响其他的事务&#…

用友数据库错误“未能读取并闩锁页(1:3355)(用闩锁类型SH)”修复

客户硬盘无法识别,检测后,硬盘有坏道,由于数据库正在坏道上,所以恢复出来的用友数据库无法附加。 通过无日志附加后,做DBCC检测数据库出现以下错误: “消息8966,级别16,状态1&#x…

Mysql中锁的类型有哪些?

Mysql中锁的类型有哪些? 1. 基于锁的属性分类:共享锁、排他锁2. 基于锁的粒度分类:行级锁(INNODB)、表级锁(INNODB、MYISAM)、页级锁(BDB引擎)、记录锁、间隙锁、临键锁。…

mysql 常见锁的类型(一)

文章目录 一、锁的分类1.1 加锁的目的1.2 锁的类别 二、乐观锁和悲观锁2.1. 乐观锁2.2. 悲观锁: 三、共享锁与排他锁四、表锁五、意向锁六、行级锁七、记录锁(Record Locks)八、间隙锁(Gap Locks)九、临键锁&#xff0…

MySQL-InnoDB常用锁类型解析

Shared(乐观锁) and Exclusive Locks(互斥锁): InnoDB有两种锁类型,Shared(s) and Exclusive(x) Locks(乐观锁和互斥锁)。 Shared&…

MySql InnoDB锁类型

MySql InnoDB锁类型 从类型上来分类,InnoDB存储引擎实现了两种标准的锁 共享锁(S-Lock):允许事务读一行数据 排它锁(X-Lock):允许事务删除或者更新一行数据 如果一个事务获取了S锁,那么其他事务也可以立即获得S锁,…

锁的分类总结

锁的分类是从不同角度去看的。同一个锁也可以同时属于多种类型。 一、乐观锁与悲观锁 1. 互斥同步锁的劣势 阻塞和唤醒会带来性能的劣势 用户态和核心态切换上下文切换检查是否有被阻塞线程需要被唤醒等等 可能出现永久阻塞的问题:持有锁的线程永久阻塞了&#…

锁的介绍和分类(轻量级锁 重量级锁 偏向锁 自旋锁 互斥锁)

目录 公平锁 非公平锁 非公平锁 公平锁 可重入锁 不可重入锁 可重入锁(递归锁) 不可重入锁 轻量级锁 重量级锁 偏向锁 重量级锁 自旋锁(循环上锁) 轻量级锁 轻量级锁的释放 偏向锁 自旋锁和互斥锁 自旋锁 互斥锁 为何要使用自旋锁 自旋…

最全锁种类

你可能听说过很多锁,也看到过很多文章讲解锁,这篇我在这里将对锁的不同分类进行描述锁的设计 互斥锁–共享锁 互斥锁:顾名思义,就是互斥的,意思就是当前同步代码块只能被一个线程访问,sync、reentrantlock、…

锁的类型有哪些

锁的类型有哪些 基于锁的属性分类:共享锁、排他锁。 基于锁的粒度分类:行级锁(INNODB)、表级锁(INNODB、MYISAM)、页级锁(BDB引擎 )、记录锁、间隙锁、临键锁。 基于锁的状态分类:意向共享锁、意向排它锁 共享锁(Share Lock) 共享锁又称读锁&…

Kettle使用教程之Job使用

1、Kettle的Job使用十分简单,这里也只是演示比较简单的操作,创建Job 2、点击转换,然后点击浏览,选择转换对象 3、执行按钮,运行该转换 4、如果需要长期的进行定时转换,可以在Job中的start控件进行配置 转载…

Kettle使用教程之数据同步

Kettle使用教程之数据同步 数据模型原型如下: 1、表输入,针对最新的数据输入的表 2、目标表,需要更新的表 3、两个表都需要进行排序操作 4、合并,根据id进行合并 5、数据同步(包括更新、插入、删除) 6、点击运行,就可…

ETL开发工具KETTLE使用教程

Kettle的建立数据库连接、使用kettle进行简单的全量对比插入更新:kettle会自动对比用户设置的对比字段,若目标表不存在该字段,则新插入该条记录。若存在,则更新。 Kettle简介:Kettle是一款国外开源的ETL工具&#xff0…

ETL工具Kettle使用教程

Kettle使用教程之数据同步 数据同步标识字段 标志字段的值有4种,分别是: “Identical” : 关键字段在新旧数据源中都存在,且域值相同 “changed” : 关键字段在新旧数据源中都存在,但域值不同 “new” : 旧数据源中没有找到该…

Kettle使用教程(一)—— 在MacOS系统中安装 Kettle

Kettle使用教程(一)—— 在MacOS系统中安装 Kettle 一、环境准备二、下载并启动Kettle二、初始化资源库 一、环境准备 Kettle 9.2JDK 1.8 (安装指引)Mysql(安装指引) 二、下载并启动Kettle 首先到官网下…

Kettle使用教程(问题)

关于kettle的介绍此文不做介绍 笔者电脑环境 winoraclejdk1.8kettle7.1 1. 考虑到在在官网下载速度比较慢,在这里可以使用国内的镜像 国内镜像 2. 配置java环境 (1) kettle需要以来java环境,因为没有安装java环境的朋友请移步配置java环境&#xff…

R-P-Faster R-CNN day65 读论文:高分辨率遥感影像综合地理空间目标检测框架

An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery 1. Introduction3. Overview of the Proposed R-P-Faster R-CNN Framework3.1. 有效集成区域建议网络与目标检测Faster R-CNN框架3.1.2. RPN与…