CSP-S 2021

article/2025/9/27 15:30:52

[CSP-S 2021] 括号序列

题目描述

小 w 在赛场上遇到了这样一个题:一个长度为 n n n 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。

身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。

具体而言,小 w 定义“超级括号序列”是由字符 ()* 组成的字符串,并且对于某个给定的常数 k k k,给出了“符合规范的超级括号序列”的定义如下:

  1. ()(S) 均是符合规范的超级括号序列,其中 S 表示任意一个仅由不超过 k \bm{k} k 字符 * 组成的非空字符串(以下两条规则中的 S 均为此含义);
  2. 如果字符串 AB 均为符合规范的超级括号序列,那么字符串 ABASB 均为符合规范的超级括号序列,其中 AB 表示把字符串 A 和字符串 B 拼接在一起形成的字符串;
  3. 如果字符串 A 为符合规范的超级括号序列,那么字符串 (A)(SA)(AS) 均为符合规范的超级括号序列。
  4. 所有符合规范的超级括号序列均可通过上述 3 条规则得到。

例如,若 k = 3 k = 3 k=3,则字符串 ((**()*(*))*)(***) 是符合规范的超级括号序列,但字符串 *()(*()*)((**))*)(****(*)) 均不是。特别地,空字符串也不被视为符合规范的超级括号序列。

现在给出一个长度为 n n n 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 ? 表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?

可怜的小 c 并不会做这道题,于是只好请求你来帮忙。

输入格式

第一行,两个正整数 n , k n, k n,k

第二行,一个长度为 n n n 且仅由 ()*? 构成的字符串 S S S

输出格式

输出一个非负整数表示答案对 10 9 + 7 {10}^9 + 7 109+7 取模的结果。

样例 #1

样例输入 #1

7 3
(*??*??

样例输出 #1

5

样例 #2

样例输入 #2

10 2
???(*??(?)

样例输出 #2

19

提示

【样例解释 #1】

如下几种方案是符合规范的:

(**)*()
(**(*))
(*(**))
(*)**()
(*)(**)

【数据范围】

测试点编号 n ≤ n \le n特殊性质
1 ∼ 3 1 \sim 3 13 15 15 15
4 ∼ 8 4 \sim 8 48 40 40 40
9 ∼ 13 9 \sim 13 913 100 100 100
14 ∼ 15 14 \sim 15 1415 500 500 500 S S S 串中仅含有字符 ?
16 ∼ 20 16 \sim 20 1620 500 500 500

对于 100 % 100 \% 100% 的数据, 1 ≤ k ≤ n ≤ 500 1 \le k \le n \le 500 1kn500

转载一部写的非常好的题解

来源:洛谷
作者:wsyear
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

#include <bits/stdc++.h>
using namespace std;const int M = 510, mod = 1e9+7;
typedef long long LL;
LL dp[M][M][10];
int n, k;
char c[M];bool cmp(int a ,int b){return (c[a]=='(' || c[a]=='?') && (c[b]==')' || c[b]=='?');
}int main()
{scanf("%d%d%s", &n, &k, c+1);for(int i=1 ; i<=n ; i++)   dp[i][i-1][0] = 1;for(int len=1 ; len<=n ; len++)for(int l=1 ; l<=n-len+1 ; l++){int r = l+len-1;if(len<=k) dp[l][r][0]=dp[l][r-1][0]&&(c[r]=='*'||c[r]=='?');if(len>=2){if(cmp(l,r)) dp[l][r][1]=(dp[l+1][r-1][0]+dp[l+1][r-1][2]+dp[l+1][r-1][3]+dp[l+1][r-1][4])%mod;for(int i=l ; i<r ; i++){dp[l][r][2]=(dp[l][r][2]+dp[l][i][3]*dp[i+1][r][0])%mod;dp[l][r][3]=(dp[l][r][3]+(dp[l][i][2]+dp[l][i][3])*dp[i+1][r][1])%mod;dp[l][r][4]=(dp[l][r][4]+(dp[l][i][4]+dp[l][i][5])*dp[i+1][r][1])%mod;dp[l][r][5]=(dp[l][r][5]+dp[l][i][4]*dp[i+1][r][0])%mod;}}dp[l][r][5]=(dp[l][r][5]+dp[l][r][0])%mod;dp[l][r][3]=(dp[l][r][3]+dp[l][r][1])%mod;}printf("%lld", dp[1][n][3]);return 0;
}

[CSP-S 2021] 廊桥分配

题目描述

当一架飞机抵达机场时,可以停靠在航站楼旁的廊桥,也可以停靠在位于机场边缘的远机位。乘客一般更期待停靠在廊桥,因为这样省去了坐摆渡车前往航站楼的周折。然而,因为廊桥的数量有限,所以这样的愿望不总是能实现。

机场分为国内区和国际区,国内航班飞机只能停靠在国内区,国际航班飞机只能停靠在国际区。一部分廊桥属于国内区,其余的廊桥属于国际区。

L 市新建了一座机场,一共有 n n n 个廊桥。该机场决定,廊桥的使用遵循“先到先得”的原则,即每架飞机抵达后,如果相应的区(国内/国际)还有空闲的廊桥,就停靠在廊桥,否则停靠在远机位(假设远机位的数量充足)。该机场只有一条跑道,因此不存在两架飞机同时抵达的情况。

现给定未来一段时间飞机的抵达、离开时刻,请你负责将 n n n 个廊桥分配给国内区和国际区,使停靠廊桥的飞机数量最多。

输入格式

输入的第一行,包含三个正整数 n , m 1 , m 2 n, m_1, m_2 n,m1,m2,分别表示廊桥的个数、国内航班飞机的数量、国际航班飞机的数量。

接下来 m 1 m_1 m1 行,是国内航班的信息,第 i i i 行包含两个正整数 a 1 , i , b 1 , i a_{1, i}, b_{1, i} a1,i,b1,i,分别表示一架国内航班飞机的抵达、离开时刻。

接下来 m 2 m_2 m2 行,是国际航班的信息,第 i i i 行包含两个正整数 a 2 , i , b 2 , i a_{2, i}, b_{2, i} a2,i,b2,i,分别表示一架国际航班飞机的抵达、离开时刻。

每行的多个整数由空格分隔。

输出格式

输出一个正整数,表示能够停靠廊桥的飞机数量的最大值。

样例 #1

样例输入 #1

3 5 4
1 5
3 8
6 10
9 14
13 18
2 11
4 15
7 17
12 16

样例输出 #1

7

样例 #2

样例输入 #2

2 4 6
20 30
40 50
21 22
41 42
1 19
2 18
3 4
5 6
7 8
9 10

样例输出 #2

4

提示

【样例解释 #1】

在图中,我们用抵达、离开时刻的数对来代表一架飞机,如 ( 1 , 5 ) (1, 5) (1,5) 表示时刻 1 1 1 抵达、时刻 5 5 5 离开的飞机;用 √ \surd 表示该飞机停靠在廊桥,用 × \times × 表示该飞机停靠在远机位。

我们以表格中阴影部分的计算方式为例,说明该表的含义。在这一部分中,国际区有 2 2 2 个廊桥, 4 4 4 架国际航班飞机依如下次序抵达:

  1. 首先 ( 2 , 11 ) (2, 11) (2,11) 在时刻 2 2 2 抵达,停靠在廊桥。
  2. 然后 ( 4 , 15 ) (4, 15) (4,15) 在时刻 4 4 4 抵达,停靠在另一个廊桥。
  3. 接着 ( 7 , 17 ) (7, 17) (7,17) 在时刻 7 7 7 抵达,这时前 2 2 2 架飞机都还没离开、都还占用着廊桥,而国际区只有 2 2 2 个廊桥,所以只能停靠远机位。
  4. 最后 ( 12 , 16 ) (12, 16) (12,16) 在时刻 12 12 12 抵达,这时 ( 2 , 11 ) (2, 11) (2,11) 这架飞机已经离开,所以有 1 1 1 个空闲的廊桥,该飞机可以停靠在廊桥。

根据表格中的计算结果,当国内区分配 2 2 2 个廊桥、国际区分配 1 1 1 个廊桥时,停靠廊桥的飞机数量最多,一共 7 7 7 架。

【样例解释 #2】

当国内区分配 2 2 2 个廊桥、国际区分配 0 0 0 个廊桥时,停靠廊桥的飞机数量最多,一共 4 4 4 架,即所有的国内航班飞机都能停靠在廊桥。

需要注意的是,本题中廊桥的使用遵循“先到先得”的原则,如果国际区只有 1 1 1 个廊桥,那么将被飞机 ( 1 , 19 ) (1, 19) (1,19) 占用,而不会被 ( 3 , 4 ) (3, 4) (3,4) ( 5 , 6 ) (5, 6) (5,6) ( 7 , 8 ) (7, 8) (7,8) ( 9 , 10 ) (9, 10) (9,10) 4 4 4 架飞机先后使用。

【数据范围】

对于 20 % 20 \% 20% 的数据, n ≤ 100 n \le 100 n100 m 1 + m 2 ≤ 100 m_1 + m_2 \le 100 m1+m2100
对于 40 % 40 \% 40% 的数据, n ≤ 5000 n \le 5000 n5000 m 1 + m 2 ≤ 5000 m_1 + m_2 \le 5000 m1+m25000
对于 100 % 100 \% 100% 的数据, 1 ≤ n ≤ 10 5 1 \le n \le {10}^5 1n105 m 1 , m 2 ≥ 1 m_1, m_2 \ge 1 m1,m21 m 1 + m 2 ≤ 10 5 m_1 + m_2 \le {10}^5 m1+m2105,所有 a 1 , i , b 1 , i , a 2 , i , b 2 , i a_{1, i}, b_{1, i}, a_{2, i}, b_{2, i} a1,i,b1,i,a2,i,b2,i 为数值不超过 10 8 {10}^8 108 的互不相同的正整数,且保证对于每个 i ∈ [ 1 , m 1 ] i \in [1, m_1] i[1,m1],都有 a 1 , i < b 1 , i a_{1, i} < b_{1, i} a1,i<b1,i,以及对于每个 i ∈ [ 1 , m 2 ] i \in [1, m_2] i[1,m2],都有 a 2 , i < b 2 , i a_{2, i} < b_{2, i} a2,i<b2,i

【感谢 hack 数据提供】

  • xingxuxin。
  • cyslngsul。

题解

让我们先忽略廊桥数量的限制来安排航班。我们维护一个空闲的廊桥队列,每到达一架航班,就给它安排编号最小的廊桥供其使用。

现在加上廊桥数量的限制。容易发现刚才的廊桥分配方法直接就帮我们解决了廊桥限制的问题:如果当前有 n 个廊桥可供使用,则分配到 n+1 号及以后的廊桥实质上就是分配到远机位了,不需要再做任何额外的处理。

到这里做法就很清晰了:我们按照开头提到的分配方法来安排航班的停靠位置,记录各廊桥停靠的航班数,做一个前缀和,最后枚举分配给某个区的廊桥数,算出各情况下两区实际使用廊桥的航班数总和,即可解决本题。

代码

#include <bits/stdc++.h>
using namespace std;const int M = 1e5+100;
typedef pair<int,int> PII;
PII a[M], t1[M], t2[M];
int res1[M], res2[M], n, m1, m2, qzh1[M], qzh2[M];int main()
{scanf("%d%d%d", &n, &m1, &m2);for(int i=0 ; i<m1 ; i++)scanf("%d%d", &a[i].first, &a[i].second);sort(a, a+m1);for(int i=0 ; i<m1 ; i++)for(int j=1 ; j<=m1 ; j++)if(a[i].first > t1[j].first) {res1[i] = j;t1[j].first = a[i].second;t1[j].second++;break;}for(int i=0 ; i<m2 ; i++)scanf("%d%d", &a[i].first, &a[i].second);sort(a, a+m2);for(int i=0 ; i<m2 ; i++)for(int j=1 ; j<=m2 ; j++)if(a[i].first > t2[j].first){res2[i] = j;t2[j].first = a[i].second;t2[j].second++;break;}for(int i=0 ; i<=n ; i++)qzh1[i] = qzh1[i-1]+t1[i].second, qzh2[i] = qzh2[i-1]+t2[i].second;int res = 0;for(int l=0 ; l<=n ; l++)res = max(res, qzh1[l]+qzh2[n-l]);printf("%d", res);return 0;
}

[CSP-S 2021] 回文

题目描述

给定正整数 n n n 和整数序列 a 1 , a 2 , … , a 2 n a_1, a_2, \ldots, a_{2 n} a1,a2,,a2n,在这 2 n 2 n 2n 个数中, 1 , 2 , … , n 1, 2, \ldots, n 1,2,,n 分别各出现恰好 2 2 2 次。现在进行 2 n 2 n 2n 次操作,目标是创建一个长度同样为 2 n 2 n 2n 的序列 b 1 , b 2 , … , b 2 n b_1, b_2, \ldots, b_{2 n} b1,b2,,b2n,初始时 b b b 为空序列,每次可以进行以下两种操作之一:

  1. 将序列 a a a 的开头元素加到 b b b 的末尾,并从 a a a 中移除。
  2. 将序列 a a a 的末尾元素加到 b b b 的末尾,并从 a a a 中移除。

我们的目的是让 b b b 成为一个回文数列,即令其满足对所有 1 ≤ i ≤ n 1 \le i \le n 1in,有 b i = b 2 n + 1 − i b_i = b_{2 n + 1 - i} bi=b2n+1i。请你判断该目的是否能达成,如果可以,请输出字典序最小的操作方案,具体在【输出格式】中说明。

输入格式

每个测试点包含多组测试数据。

输入的第一行,包含一个整数 T T T,表示测试数据的组数。对于每组测试数据:

第一行,包含一个正整数 n n n
第二行,包含 2 n 2 n 2n 个用空格隔开的整数 a 1 , a 2 , … , a 2 n a_1, a_2, \ldots, a_{2 n} a1,a2,,a2n

输出格式

对每组测试数据输出一行答案。

如果无法生成出回文数列,输出一行 ‐1,否则输出一行一个长度为 2 n 2 n 2n 的、由字符 LR 构成的字符串(不含空格),其中 L 表示移除开头元素的操作 1,R 表示操作 2。

你需要输出所有方案对应的字符串中字典序最小的一个。

字典序的比较规则如下:长度均为 2 n 2 n 2n 的字符串 s 1 ∼ 2 n s_{1 \sim 2 n} s12n t 1 ∼ 2 n t_{1 \sim 2 n} t12n 字典序小,当且仅当存在下标 1 ≤ k ≤ 2 n 1 \le k \le 2 n 1k2n 使得对于每个 1 ≤ i < k 1 \le i < k 1i<k s i = t i s_i = t_i si=ti s k < t k s_k < t_k sk<tk

样例 #1

样例输入 #1

2
5
4 1 2 4 5 3 1 2 3 5
3
3 2 1 2 1 3

样例输出 #1

LRRLLRRRRL
-1

样例 #2

样例输入 #2

见附件中的 palin/palin2.in

样例输出 #2

见附件中的 palin/palin2.ans

提示

【样例解释 #1】

在第一组数据中,生成的的 b b b 数列是 [ 4 , 5 , 3 , 1 , 2 , 2 , 1 , 3 , 5 , 4 ] [4, 5, 3, 1, 2, 2, 1, 3, 5, 4] [4,5,3,1,2,2,1,3,5,4],可以看出这是一个回文数列。

另一种可能的操作方案是 LRRLLRRRRR,但比答案方案的字典序要大。

【数据范围】

∑ n \sum n n 表示所有 T T T 组测试数据中 n n n 的和。

对所有测试点保证 1 ≤ T ≤ 100 1 \le T \le 100 1T100 1 ≤ n , ∑ n ≤ 5 × 10 5 1 \le n, \sum n \le 5 \times {10}^5 1n,n5×105

测试点编号 T ≤ T \le T n ≤ n \le n ∑ n ≤ \sum n \le n特殊性质
1 ∼ 7 1 \sim 7 17 10 10 10 10 10 10 50 50 50
8 ∼ 10 8 \sim 10 810 100 100 100 20 20 20 1000 1000 1000
11 ∼ 12 11 \sim 12 1112 100 100 100 100 100 100 1000 1000 1000
13 ∼ 15 13 \sim 15 1315 100 100 100 1000 1000 1000 25000 25000 25000
16 ∼ 17 16 \sim 17 1617 1 1 1 5 × 10 5 5 \times {10}^5 5×105 5 × 10 5 5 \times {10}^5 5×105
18 ∼ 20 18 \sim 20 1820 100 100 100 5 × 10 5 5 \times {10}^5 5×105 5 × 10 5 5 \times {10}^5 5×105
21 ∼ 25 21 \sim 25 2125 100 100 100 5 × 10 5 5 \times {10}^5 5×105 5 × 10 5 5 \times {10}^5 5×105

特殊性质:如果我们每次删除 a a a 中两个相邻且相等的数,存在一种方式将序列删空(例如 a = [ 1 , 2 , 2 , 1 ] a = [1, 2, 2, 1] a=[1,2,2,1])。

【hack 数据提供】
@潜在了H2O下面。

题解

可以看出,第一个入队的数势必会在最后一个入队,而第二个入队的数势必会在倒数第二个入队。而倒数第二个入队的数和最后第一个入队的数必定是相挨着的(这里省略证明过程)。所以,我们先找到第一个入队的数的另一个位置,并把数组以这个位置向左和向右分成两个队列,把队头和队尾进行匹配,匹配成功就继续,失败则返回 − 1 -1 1

代码

由于苯人代码只有60分,这里就转载我的好同学huyuun的代码

#include <iostream>
#include <algorithm>
#include <cstring>
#include <stdio.h>using namespace std;const int N = 5e5 + 10;int n, a[N + N];
int first, last;
int stk1[N + N], stk2[N + N];
int t1, t2, h1, h2;
string ans[3];void solve(int mid) {h1 = h2 = 1;t1 = t2 = 0;int l1, l2;if (mid == first)l1 = 2, l2 = n + n;elsel1 = 1, l2 = n + n - 1;for (int i = mid - 1 ; i >= l1 ; i -- )stk1[ ++ t1] = a[i];for (int i = mid + 1 ; i <= l2 ; i ++ )stk2[ ++ t2] = a[i];while (t1 >= h1 || t2 >= h2) if (t1 >= h1 && ((t1 > h1 && stk1[h1] == stk1[t1]) || (t2 >= h2 && stk2[h2] == stk1[t1]))) {ans[3 - l1] += 'L';if (t1 > h1 && stk1[h1] == stk1[t1])ans[3 - l1] += 'L', h1 ++ ;else if (t2 >= h2 && stk2[h2] == stk1[t1])ans[3 - l1] += 'R', h2 ++ ;t1 -- ;continue;}if (t2 >= h2 && ((t2 > h2 && stk2[h2] == stk2[t2]) || (t1 >= h1 && stk1[h1] == stk2[t2]))) {ans[3 - l1] += 'R';if (t2 > h2 && stk2[h2] == stk2[t2])ans[3 - l1] += 'R', h2 ++ ;else if (t1 >= h1 && stk1[h1] == stk2[t2])ans[3 - l1] += 'L', h1 ++ ;t2 -- ;continue;}return;}
}int main() 
{int T;scanf("%d", &T);while (T -- ) {scanf("%d", &n);ans[1].clear(), ans[2].clear();for (int i = 1 ; i <= n + n ; i ++ ) {scanf("%d", a + i);if (a[i] == a[1])first = i;}for (int i = n + n - 1 ; i ; i -- )if (a[i] == a[n + n])last = i;ans[1] += 'L', ans[2] += 'R';ans[1] += 'L', ans[2] += 'L';solve(first);solve(last);if (ans[1].size() < n + n && ans[2].size() < n + n)puts("-1");else {if (ans[1].size() == n + n) {for (int i = 0 ; i < n + n ; i += 2)cout << ans[1][i];for (int i = n + n - 1 ; i >= 0 ; i -= 2)cout << ans[1][i];} else if (ans[2].size() == n + n) {for (int i = 0 ; i < n + n ; i += 2)cout << ans[2][i];for (int i = n + n - 1 ; i >= 0 ; i -= 2)cout << ans[2][i];}puts("");}}return 0;
}

http://chatgpt.dhexx.cn/article/Wa8jQVi1.shtml

相关文章

CyberSploit:1

一、环境搭建 靶机下载地址&#xff1a;https://www.vulnhub.com/entry/cybersploit-1,506/ 二、漏洞复现 探测靶机ip地址&#xff0c;得到靶机IP地址 nmap扫描服务以及端口&#xff0c;发现80和22端口 访问80端口&#xff0c;看到一个页面&#xff0c;查看源码未发现东西 …

[网络安全]dSploit-Android系统下的网络分析和渗透套件的使用

一、准备工作 一台已经获得root权限的安卓手机&#xff0c;并且安卓系统版本在 2.3 以上 busyBox 安装软件 下载地址 BusyBox 是一个集成了一百多个最常用linux命令和工具的软件。&#xff3b;百度百科&#xff3d; 安装这个软件主要是为dsploit软件的运行提供 linux 中…

记一次无线渗透

用到的工具 一台root的安卓手机&#xff08;我这台手机刷了miui9&#xff09; Csploit 安卓渗透神器 下载地址&#xff1a;https://github.com/cSploit/android/releases Kali meterpreter 当然你有Kali的Nethunter设备更好 开始测试 利用万能钥匙找一波wifi&#xff0c;运气好…

为网络安全红队方向提供的资源,工具大合集(渗透测试)

这是一份必备的资源大合集&#xff0c;收录了最优秀的网络安全红队方向&#xff08;渗透测试&#xff09;的资源和工具。 &#xff08;文末领取读者福利&#xff09; 无论您是初学者还是专业人士&#xff0c;都能从中获得所需的技能和知识。 在这个信息化时代&#xff0c;网络…

如何在网站中插入视频

&#xfeff;&#xfeff; 很多新手站长在往自己网站里&#xff0c;添加土豆优酷等视频网站里的视频时&#xff0c;会遇到一些麻烦,珊珊在这里向大家介绍一种简单方法. 1.首先要找到要插入的视频&#xff0c;如下图点击分享给朋友右侧的小按钮. 2.点击按钮后弹出一个窗口点击复…

Word中轻松插入本地视频

场景 在Word文档中插入视频 实现 新建或打开Word文档 找到上面插入菜单栏&#xff0c;点击并选择对象 点击后选择PPT 点击确定 此时会打开PPT&#xff0c;然后再选择上面的插入 选择插入下的视频选项&#xff0c;然后选择PC上的视频 选择视频后点击插入 可以调整视频大小 …

如何在html里插入视频

第一步&#xff1a;首先下载video.js&#xff0c;百度一下就能找到。 这个是下载后的目录。 第二步&#xff1a;先把要用到的js\css\swf都加载到html页面上。 如&#xff1a; 第三步&#xff1a;加入下面的代码&#xff1a; <video id"my_video_1" class"…

制作往图片里插入视频,视频添加到图片上播放

在视频中还有个小视频同时播放&#xff0c;这种画中画的效果以前都学习过&#xff0c;那在图片上插入视频播放&#xff0c;可以用媒体梦工厂中的画中画功能来制作吗&#xff1f;这个肯定是可以的了。下面就来看看怎么的操作的吧。 先来看看图片加视频制作出来的画中画效果 制作…

插入视频--使用<video>标签为网页添加视频

使用方法 举例 显示结果 在网页上添加视频和添加音频的标签属性用法相同。 讲解 1.autoplay:如果出现该属性&#xff0c;则视频在就绪后马上播放。 2.controls:如果出现该属性&#xff0c;则向用户显示控件&#xff0c;比如播放按钮。 3.loop:如果出现该属性&#xff0c;…

视频剪辑工具,如何批量在图片中插入视频

怎么批量在图片中插入视频呢&#xff1f;其实这是一种很常见的效果&#xff0c;那么这种效果是怎么制作的呢&#xff1f;下面随小编一起来操作。 所需工具 多张图片、视频素材 操作步骤 运行媒体梦工厂&#xff0c;将图片导入画中画板块中的“底画”中&#xff0c;多张图片&…

教你给视频画面任意位置插入GIF图

视频怎么添加GIF图片呢&#xff1f;如何在视频任意位置添加的呢&#xff1f;其实很简单。教你这个简单的剪辑方法。一起来试试吧。 准备工具&#xff1a; 视频素材及动图 下载一个视频剪辑高手 开始操作&#xff1a; 运行软件登录上&#xff0c;在多种功能上选择“批量剪辑视…

计算机word如何提交,如何在word添加视频?

您可以从计算机或Internet添加视频以直接在Word文档中播放。 此功能使您(或与您共享文档的人)可以直接观看视频而无需离开文档。 将视频添加到Word文档 将离线视频(或计算机存储中的视频)添加到Word文档的不利之处在于&#xff0c;它们只能在您的PC上播放。 如果您将文档发送给…

如何在html网页中插入视频(以及让视频自动播放的问题)

直接进入正题&#xff1a; 关于视频的插入可使用 video标签 如下图 简单介绍下用到的几个属性 class定义了video类 在style中调整这个类的长度和高度属性&#xff1b; src处引入视频的链接&#xff1b; controls属性&#xff1a;允许用户控制视频的播放&#xff0c;包括音…

HTML插入视频和音频

一、插入视频 src表示视频来源位置 height表示视频高度 autoplay表示视频自动播放 loop表示循环播放 controls表示进度控制条 muted表示静音播放 poster表示视频封面所用的图片路径 video/mp4表示视频的格式 例如&#xff1a; <video src"images\sp1.mp4&quo…

如何在html中加入视频

第一步&#xff1a;首先下载video.js&#xff0c;百度一下就能找到。 这个是下载后的目录。 第二步&#xff1a;先把要用到的js\css\swf都加载到html页面上。 如&#xff1a; <link href"video-js/video-js.css" rel"stylesheet" type"text/css&qu…

关于使用video标签插入视频时,视频无法播放的问题

写代码遇到一个问题&#xff1a;使用video标签插入视频时&#xff0c;在chrome中无法播放&#xff0c;只显示了一个封面图片&#xff0c;在ie却可以播放。 video的使用是看别人的&#xff1a; 由于照搬别人的代码&#xff0c;我写的代码如下&#xff1a; <video width&q…

HTML视频插入

本文介绍两种视频插入方法&#xff08;为了防止有些视频播放不了不要放中文路径&#xff09; 第一种页面显示视频使用video标签&#xff1a; <video width"320" height"240" controls"controls"><source src"mp4/qq.mp4" &g…

如何在网页中插入视频

想在网页中插入视频从网上搜索了大概有以下两种方法&#xff1a; 是由HTML5自带的标签&#xff0c;这个标签就可以适用于很多的浏览器&#xff0c;但是对视频的格式有很高的要求&#xff0c;假如你是MP4的视频格式&#xff0c;那么就要求你的编码方式一定要是AVC(H264)的。建议…

如何插入视频

视频插入 我们在微信小程序中&#xff0c;经常看见一些新闻报道除了汉字解说有的还附带着视频。这样更能吸引用户的兴趣。那么问题来了&#xff0c;怎样在微信小程序中插入想要的视频呢&#xff1f;接下来让我给大家浅薄的讲解一下吧。 这是我插入的视频&#xff1a; 我们在.w…

JAVA中DateTime获取当前时间

原文链接&#xff1a;这里&#xff01; 参考代码&#xff1a; Test public void test(){DateTime time new DateTime(); //获取当前时间System.out.println(time); //输出当前时间 }需要传参数的可以看 这篇文章。 springMVC中从前台往后台传时间 – 每天进步一点点 (longku…