一 Vold工作机制分析
vold进程:管理和控制Android平台外部存储设备,包括SD插拨、挂载、卸载、格式化等;
vold进程接收来自内核的外部设备消息。
Vold框架图如下:
Vold接收来自内核的事件,通过netlink机制。
Netlink 是一种特殊的 socket;
Netlink 是一种在内核与用户应用间进行双向数据传输的非常好的方式,用户态应用使用标准的socket API 就可以使用 netlink 提供的强大功能;
Netlink是一种异步通信机制,在内核与用户态应用之间传递的消息保存在socket缓存队列中;
内核通过Netlink发送uEvent格式消息给用户空间程序;外部设备发生变化,Kernel发送uevent消息。
二 Vold进程启动过程
service vold /system/bin/voldclass coresocket vold stream 0660 root mountioprio be 2
vold进程执行过程:
\system\vold\main.cpp
int main() {VolumeManager *vm;CommandListener *cl;NetlinkManager *nm;//创建vold设备文件夹mkdir("/dev/block/vold", 0755);//初始化Vold相关的类实例 singlevm = VolumeManager::Instance();nm = NetlinkManager::Instance();//CommandListener 创建vold socket监听上层消息cl = new CommandListener();vm->setBroadcaster((SocketListener *) cl);nm->setBroadcaster((SocketListener *) cl);//启动VolumeManager vm->start();//根据配置文件/etc/vold.fstab 初始化VolumeManager process_config(vm);//启动NetlinkManager socket监听内核发送ueventnm->start();//向/sys/block/目录下所有设备uevent文件写入“add\n”,//触发内核sysfs发送uevent消息coldboot("/sys/block");//启动CommandListener监听vold socketcl->startListener();// Eventually we'll become the monitoring threadwhile(1) {sleep(1000);}exit(0); }
process_config解析vold.fstab文件:
static int process_config(VolumeManager *vm) {//打开vold.fstab的配置文件fp = fopen("/etc/vold.fstab", "r")//解析vold.fstab 配置存储设备的挂载点while(fgets(line, sizeof(line), fp)) {const char *delim = " \t";char *type, *label, *mount_point, *part, *mount_flags, *sysfs_path;type = strtok_r(line, delim, &save_ptr)label = strtok_r(NULL, delim, &save_ptr)mount_point = strtok_r(NULL, delim, &save_ptr)//判断分区 auto没有分区part = strtok_r(NULL, delim, &save_ptr)if (!strcmp(part, "auto")) {//创建DirectVolume对象 相关的挂载点设备的操作dv = new DirectVolume(vm, label, mount_point, -1);} else {dv = new DirectVolume(vm, label, mount_point, atoi(part));}//添加挂载点设备路径while ((sysfs_path = strtok_r(NULL, delim, &save_ptr))) {dv->addPath(sysfs_path)}//将DirectVolume 添加到VolumeManager管理vm->addVolume(dv);}fclose(fp);return 0; }
vold.fstab文件:
导出一个我的手机里面的vold.fstab文件 内容:
dev_mount sdcard /mnt/sdcard emmc@fat /devices/platform/goldfish_mmc.0 /devices/platform/mtk-sd.0/mmc_hostdev_mount external_sdcard /mnt/sdcard/external_sd auto /devices/platform/goldfish_mmc.1 /devices/platform/mtk-sd.1/mmc_host
vold.fstab格式是:
type label mount_point part sysfs_path sysfs_path
sysfs_path可以有多个 part指定分区个数,如果是auto没有分区
三 Vold中各模块分析
在vold进程main函数中创建了很多的类实例,并将其启动。
int main() {……vm->start();nm->start();cl->startListener(); }
这些类对象之间是如何的,还需要现弄清楚每个类的职责和工作机制。
1 NetlinkManager模块
NetlinkManager模块接收从Kernel发送的Uevent消息,解析转换成NetlinkEvent对象;再将此NetlinkEvent对象传递给VolumeManager处理。
此模块相关的类结构:
下面从start开始,看起如何对Kernel的Uevent消息进行监控的。
NetlinkManager start:
int NetlinkManager::start() {//netlink使用的socket结构struct sockaddr_nl nladdr;//初始化socket数据结构memset(&nladdr, 0, sizeof(nladdr));nladdr.nl_family = AF_NETLINK;nladdr.nl_pid = getpid();nladdr.nl_groups = 0xffffffff;//创建socket PF_NETLINK类型mSock = socket(PF_NETLINK,SOCK_DGRAM,NETLINK_KOBJECT_UEVENT);//配置socket 大小setsockopt(mSock, SOL_SOCKET, SO_RCVBUFFORCE, &sz, sizeof(sz);setsockopt(mSock, SOL_SOCKET, SO_PASSCRED, &on, sizeof(on);//bindsocket地址bind(mSock, (struct sockaddr *) &nladdr, sizeof(nladdr);//创建NetlinkHandler 传递socket标识,并启动mHandler = new NetlinkHandler(mSock);mHandler->start();return 0; }
NetlinkHandler start:
int NetlinkHandler::start() { //父类startListener return this->startListener(); }
NetlinkListener start:
int SocketListener::startListener() { //NetlinkHandler mListen为false if (mListen && listen(mSock, 4) < 0) {return -1;} else if (!mListen){//mListen为false 用于netlink消息监听//创建SocketClient作为SocketListener 的客户端 mClients->push_back(new SocketClient(mSock, false, mUseCmdNum));}
//创建匿名管道 pipe(mCtrlPipe);//创建线程执行函数threadStart 参thispthread_create(&mThread, NULL, SocketListener::threadStart, this); }
线程监听Kernel netlink发送的UEvent消息:
void *SocketListener::threadStart(void *obj) {//参数转换SocketListener *me = reinterpret_cast<SocketListener *>(obj);me->runListener();pthread_exit(NULL);return NULL;}
SocketListener 线程消息循环:
void SocketListener::runListener() {//SocketClient ListSocketClientCollection *pendingList = new SocketClientCollection();while(1) {fd_set read_fds;//mListen 为falseif (mListen) {max = mSock;FD_SET(mSock, &read_fds);}//加入一组文件描述符集合 选择fd最大的maxFD_SET(mCtrlPipe[0], &read_fds);pthread_mutex_lock(&mClientsLock);for (it = mClients->begin(); it != mClients->end(); ++it) {int fd = (*it)->getSocket();FD_SET(fd, &read_fds);if (fd > max)max = fd;}pthread_mutex_unlock(&mClientsLock);//监听文件描述符是否变化rc = select(max + 1, &read_fds, NULL, NULL, NULL);//匿名管道被写,退出线程if (FD_ISSET(mCtrlPipe[0], &read_fds))break;//mListen 为falseif (mListen && FD_ISSET(mSock, &read_fds)) {//mListen 为ture 表示正常监听socketstruct sockaddr addr;do {//接收客户端连接c = accept(mSock, &addr, &alen);} while (c < 0 && errno == EINTR);//此处创建一个客户端SocketClient加入mClients列表中,异步延迟处理pthread_mutex_lock(&mClientsLock);mClients->push_back(new SocketClient(c, true, mUseCmdNum));pthread_mutex_unlock(&mClientsLock);}/* Add all active clients to the pending list first */pendingList->clear();//将所有有消息的Client加入到pendingList中pthread_mutex_lock(&mClientsLock);for (it = mClients->begin(); it != mClients->end(); ++it) {int fd = (*it)->getSocket();if (FD_ISSET(fd, &read_fds)) {pendingList->push_back(*it);}}pthread_mutex_unlock(&mClientsLock);//处理所有消息while (!pendingList->empty()) {it = pendingList->begin();SocketClient* c = *it;pendingList->erase(it);//处理有数据发送的socket 虚函数if (!onDataAvailable(c) && mListen) {//mListen为false }}} }
Netlink消息处理:
在消息循环中调用onDataAvailable处理消息,onDataAvailable是个虚函数,NetlinkListener重写了此函数。
NetlinkListener onDataAvailable消息处理:
bool NetlinkListener::onDataAvailable(SocketClient *cli) {//获取socket idint socket = cli->getSocket();//接收netlink uevent消息count = TEMP_FAILURE_RETRY(uevent_kernel_multicast_uid_recv(socket, mBuffer, sizeof(mBuffer), &uid));//解析uevent消息为NetlinkEvent消息NetlinkEvent *evt = new NetlinkEvent();evt->decode(mBuffer, count, mFormat);//处理NetlinkEvent onEvent虚函数 onEvent(evt); }
将接收的Uevent数据转化成NetlinkEvent数据,调用onEvent处理,NetlinkListener子类NetlinkHandler重写了此函数。
NetlinkHandler NetlinkEvent数据处理:
void NetlinkHandler::onEvent(NetlinkEvent *evt) {//获取VolumeManager实例VolumeManager *vm = VolumeManager::Instance();//设备类型const char *subsys = evt->getSubsystem();//将消息传递给VolumeManager处理if (!strcmp(subsys, "block")) {vm->handleBlockEvent(evt);}}
NetlinkManager通过NetlinkHandler将接收到Kernel内核发送的Uenvet消息,
转化成了NetlinkEvent结构数据传递给VolumeManager处理。
2 VolumeManager模块
此模块管理所有挂载的设备节点以及相关操作执行;下面是VolumeManager模块类结构图:
DirectVolume:一个实体存储设备在代码中的抽象。
SocketListenner:创建线程,监听socket。
这里VolumeManager构造的SocketListenner与NetlinkManager构造的SocketListenner有所不同的:
NetlinkManager构造的SocketListenner:Kernel与Vold通信;
VolumeManager构造的SocketListenner:Native Vold与Framework MountService 通信;
VolumeManager构造的SocketListenner,由vold进程main函数中创建的CommandListener:
int main() {……CommandListener *cl;cl = new CommandListener();vm->setBroadcaster((SocketListener *) cl);//启动CommandListener监听cl->startListener();}
VolumeManager工作流程:
//从main函数中的start开始: int VolumeManager::start() {return 0; }
NetlinkManager接收到Kernel通过netlink发送的Uevent消息,转化成了NetlinkEvent消息,再传递给了VolumeManager处理。
NetlinkManager与VolumeManager交互流程图:
VolumeManager处理消息 handleBlockEvent:
从NetlinkManager到VolumeManager代码过程
函数执行从onEvent到handleBlockEvent:
void NetlinkHandler::onEvent(NetlinkEvent *evt) {……//将消息传递给VolumeManager处理if (!strcmp(subsys, "block")) {vm->handleBlockEvent(evt);}}void VolumeManager::handleBlockEvent(NetlinkEvent *evt) {//有状态变化设备路径const char *devpath = evt->findParam("DEVPATH");
//遍历VolumeManager中所管理Volume对象(各存储设备代码抽象)for (it = mVolumes->begin(); it != mVolumes->end(); ++it) {if (!(*it)->handleBlockEvent(evt)) {hit = true;break;}} }
将消息交给各个Volume对象处理:DirectVolume
从VolumeManager到所管理的Volume对象
这里的Volume为其派生类DirectVolume。
int DirectVolume::handleBlockEvent(NetlinkEvent *evt)
{//有状态变化设备路径const char *dp = evt->findParam("DEVPATH");PathCollection::iterator it;for (it = mPaths->begin(); it != mPaths->end(); ++it) {//匹配 设备路径 if (!strncmp(dp, *it, strlen(*it))) {int action = evt->getAction();const char *devtype = evt->findParam("DEVTYPE");//动作判断if (action == NetlinkEvent::NlActionAdd) {int major = atoi(evt->findParam("MAJOR"));int minor = atoi(evt->findParam("MINOR"));char nodepath[255];//设备节点路径名称snprintf(nodepath,sizeof(nodepath), "/dev/block/vold/%d:%d",major, minor);
//创建设备节点 createDeviceNode(nodepath, major, minor);if (!strcmp(devtype, "disk")) {//添加disk handleDiskAdded(dp, evt);} else {//添加分区 handlePartitionAdded(dp, evt);}} else if (action == NetlinkEvent::NlActionRemove) {} else if (action == NetlinkEvent::NlActionChange) {} else {SLOGW("Ignoring non add/remove/change event");}return 0;}} }
为什么要让VolumeManager中的每一个Volume对象都去处理SD状态变换消息,
每一个Volume可能对应多个Path;即一个挂载点对应多个物理设备。
抽象存储设备DirectVolume 动作状态变化处理:
void DirectVolume::handleDiskAdded(const char *devpath, NetlinkEvent *evt) {//主次设备号mDiskMajor = atoi(evt->findParam("MAJOR"));mDiskMinor = atoi(evt->findParam("MINOR"));//设备分区情况const char *tmp = evt->findParam("NPARTS");mDiskNumParts = atoi(tmp);if (mDiskNumParts == 0) {//没有分区,Volume状态为Idle setState(Volume::State_Idle);} else {//有分区未加载,设置Volume状态Pending setState(Volume::State_Pending);}//格式化通知msg:"Volume sdcard /mnt/sdcard disk inserted (179:0)"char msg[255];snprintf(msg, sizeof(msg), "Volume %s %s disk inserted (%d:%d)",getLabel(), getMountpoint(), mDiskMajor, mDiskMinor);//调用VolumeManager中的Broadcaster——>CommandListener 发送此msgmVm->getBroadcaster()->sendBroadcast(ResponseCode::VolumeDiskInserted,msg, false); }
消息通知Framework层存储设备状态变化:
类继承关系:
发送消息通知Framework层是在SocketListener中完成;
void SocketListener::sendBroadcast(int code, const char *msg, bool addErrno)
{pthread_mutex_lock(&mClientsLock);//遍历所有的消息接收时创建的Client SocketClient// SocketClient将消息通过socket(“vold”)通信for (i = mClients->begin(); i != mClients->end(); ++i) {(*i)->sendMsg(code, msg, addErrno, false);}pthread_mutex_unlock(&mClientsLock); }
这里工作的SocketListener是VolumeManager的,SocketListener的派生类CommandListener,
用来与Framework交互的,监听Socket消息。通过VolumeManager中调用sendBroadcast,与CommandListener模块进行交互。
由此需要清楚CommandListener模块工作流程。
3 CommandListener模块
CommandListener监听Socket,使Vold与Framework层进行进程通信;
其相关类继承结构图如下:
CommandListener工作流程:
int main() {VolumeManager *vm;CommandListener *cl;NetlinkManager *nm;//CommandListener 创建vold socket监听上层消息cl = new CommandListener();//作为VolumeManager与NetlinkManager的Broadcastervm->setBroadcaster((SocketListener *) cl);nm->setBroadcaster((SocketListener *) cl);//启动CommandListener监听cl->startListener();…… }
CommandListener实例的创建:构造函数
CommandListener构造函数:
CommandListener::CommandListener() :FrameworkListener("vold", true) {//注册Framework发送的相关命令 Command模式 registerCmd(new DumpCmd());registerCmd(new VolumeCmd());registerCmd(new AsecCmd());registerCmd(new ObbCmd());registerCmd(new StorageCmd());registerCmd(new XwarpCmd());registerCmd(new CryptfsCmd());}
FrameworkListener构造函数:
FrameworkListener::FrameworkListener(const char *socketName, bool withSeq) :SocketListener(socketName, true, withSeq) {mCommands = new FrameworkCommandCollection();mWithSeq = withSeq;}
注册Command:
void FrameworkListener::registerCmd(FrameworkCommand *cmd) {mCommands->push_back(cmd); }
SocketListener构造函数:
SocketListener::SocketListener(const char *socketName, bool listen, bool useCmdNum) {//mListen = true 正常的socket监听mListen = listen;//socket 名称“vold”mSocketName = socketName;mSock = -1;mUseCmdNum = useCmdNum;//初始化锁pthread_mutex_init(&mClientsLock, NULL);//构造Listener Client ListmClients = new SocketClientCollection();}
CommandListener启动 startListener:
int SocketListener::startListener() {//mSocketName = “Vold”mSock = android_get_control_socket(mSocketName);//NetlinkHandler mListen为true 监听socketif (mListen && < 0) {return -1;} else if (!mListen){mClients->push_back(new SocketClient(mSock, false, mUseCmdNum));}//创建匿名管道 pipe(mCtrlPipe);//创建线程执行函数threadStart 参数thispthread_create(&mThread, NULL, SocketListener::threadStart, this); }void *SocketListener::threadStart(void *obj) {SocketListener *me = reinterpret_cast<SocketListener *>(obj);me->runListener(); }void SocketListener::runListener() {//SocketClient ListSocketClientCollection *pendingList = new SocketClientCollection();while(1) {fd_set read_fds;//mListen 为trueif (mListen) {max = mSock;FD_SET(mSock, &read_fds);}//加入一组文件描述符集合 选择fd最大的max select有关FD_SET(mCtrlPipe[0], &read_fds);pthread_mutex_lock(&mClientsLock);for (it = mClients->begin(); it != mClients->end(); ++it) {int fd = (*it)->getSocket();FD_SET(fd, &read_fds);if (fd > max)max = fd;}pthread_mutex_unlock(&mClientsLock);//监听文件描述符是否变化rc = select(max + 1, &read_fds, NULL, NULL, NULL);//匿名管道被写,退出线程if (FD_ISSET(mCtrlPipe[0], &read_fds))break;//mListen 为trueif (mListen && FD_ISSET(mSock, &read_fds)) {//mListen 为ture 表示正常监听socketstruct sockaddr addr;do {c = accept(mSock, &addr, &alen);} while (c < 0 && errno == EINTR);//创建一个客户端SocketClient,加入mClients列表中 到异步延迟处理pthread_mutex_lock(&mClientsLock);mClients->push_back(new SocketClient(c, true, mUseCmdNum));pthread_mutex_unlock(&mClientsLock);}/* Add all active clients to the pending list first */pendingList->clear();//将所有有消息的Client加入到pendingList中pthread_mutex_lock(&mClientsLock);for (it = mClients->begin(); it != mClients->end(); ++it) {int fd = (*it)->getSocket();if (FD_ISSET(fd, &read_fds)) {pendingList->push_back(*it);}}pthread_mutex_unlock(&mClientsLock);/* Process the pending list, since it is owned by the thread,*/while (!pendingList->empty()) {it = pendingList->begin();SocketClient* c = *it;//处理有数据发送的socket if (!onDataAvailable(c) && mListen) {//mListen为true ……}}} }
CommandListener启动的线程监听Socket消息,接收到的消息处理onDataAvailable。
CommandListener父类FrameworkCommand重写了此函数。
CommandListener监听Socket消息处理:
bool FrameworkListener::onDataAvailable(SocketClient *c) {char buffer[255];//读取socket消息len = TEMP_FAILURE_RETRY(read(c->getSocket(), buffer, sizeof(buffer)));for (i = 0; i < len; i++) {if (buffer[i] == '\0') {//根据消息内容 派发命令dispatchCommand(c, buffer + offset);offset = i + 1;}}return true; }void FrameworkListener::dispatchCommand(SocketClient *cli, char *data) {char *argv[FrameworkListener::CMD_ARGS_MAX];//解析消息内容 命令 参数 ……//执行对应的消息for (i = mCommands->begin(); i != mCommands->end(); ++i) {FrameworkCommand *c = *i;//匹配命令if (!strcmp(argv[0], c->getCommand())) {//执行命令c->runCommand(cli, argc, argv);goto out;}} out:return; }
Command执行处理:以VolumeCommand为例
CommandListener::VolumeCmd::VolumeCmd() :VoldCommand("volume") { }int CommandListener::VolumeCmd::runCommand(SocketClient *cli,int argc, char **argv) {//获取VolumeManager实例VolumeManager *vm = VolumeManager::Instance();//Action判断 传递给VolumeManager处理if (!strcmp(argv[1], "list")) {return vm->listVolumes(cli);} else if (!strcmp(argv[1], "debug")) {vm->setDebug(!strcmp(argv[2], "on") ? true : false);} else if (!strcmp(argv[1], "mount")) {rc = vm->mountVolume(argv[2]);} else if (!strcmp(argv[1], "unmount")) {rc = vm->unmountVolume(argv[2], force, revert);} else if (!strcmp(argv[1], "format")) {rc = vm->formatVolume(argv[2]);} else if (!strcmp(argv[1], "share")) {rc = vm->shareVolume(argv[2], argv[3]);} else if (!strcmp(argv[1], "unshare")) {rc = vm->unshareVolume(argv[2], argv[3]);} else if (!strcmp(argv[1], "shared")) {……return 0; }
CommandListener使用Command模式。
CommandListener接收到来自Framework层得消息,派发命令处理,再传递给VolumeManager处理。
VolumeManager中Action处理:
int VolumeManager::unmountVolume(const char *label) {//查找VolumeVolume *v = lookupVolume(label);//Volume执行动作return v-> unmountVol (); } //VolumeAction处理: int Volume::unmountVol(bool force, bool revert) {doUnmount(Volume::SEC_STG_SECIMGDIR, force);…… }int Volume::doUnmount(const char *path, bool force) {……//systemcall umount(path); }
整个Vold处理过程框架图如下: