基于配电网络特有的层次结构特性,论文提出了一种新颖的分层前推回代算法。该算法将网络支路按层次进行分类,并分层并行计算各层次的支路功率损耗和电压损耗,因而可大幅度提高配电网潮流的计算速度。论文在MATLAB环境下,利用其快速的复数矩阵运算功能,实现了文中所提的分层前推回代算法,并取得了非常明显的速度效益。另外,论文还讨论发现,当变压器支路阻抗过小时,利用Π型模型会产生数值巨大的对地导纳,由此会导致潮流不收敛。为此,论文根据理想变压器对功率和电压的变换原理,提出了一种有效的电压变换模型来处理变压器支路,从而改善了潮流算法的收敛特性。基于IEEE40节点的配电网算例系统和1338节点的实际系统进行了仿真计算,结果表明:该文算法具有速度快、收敛可靠的明显优点。由于辐射型网络结构的特殊性,有许多学者致力于开发结合其特点的潮流算法,目前具有代表性的有直接求解法[1],改进牛拉法[2],前推回代法[3~6]等。文[1]提出了一种从电源|稳压器直接到各负荷点的回路电流法,由于电源电压和负荷注入电流为已知量,就可以不需迭代直接求解线性潮流方程,但却要对节点和支路进行复杂的编号处理,把网络结构改造成统一的标准结构。文[2]提出一种形成节点导纳矩阵的方法,使得牛顿法的消去过程和回代过程更简洁,但是这种节点导纳矩阵要基于对节点的优化编号。文[3]提出在根节点处增加虚拟零阻抗支路和按规律对节点和支路编号的方法,使网络的节点-支路关联矩阵成为有一定特色的方阵,从而提高了配电网潮流的前推回代速度。比较而言,前推回代法具有方法简单,计算速度快的优点,是较为普遍使用的辐射型网络潮流算法。但是目前的算法在功率前推和电压回代时都需要对每条支路的功率损耗和电压损耗进行逐个递推计算,不能并行进行,因而影响了潮流的计算速度。另外,高压网络的潮流收敛问题常常引起人们的注意[7],而配电网潮流的类似问题却很少有文献讨论。实际中,当三绕组变压器采用常规的P型等值模型时,常常会出现前推回代法不收敛的现象。针对以上两个问题,本文进行了深入的研究,并提出了一种配电网潮流的分层前推回代算法和变压器支路的电压变换模型,以改进潮流的收敛性,提高其计算速度。
2 网络层次分析
对于辐射型网络,前推回代法的基本原理是:① 假定节