推荐系统基础(2):个性化推荐系统简述

article/2025/7/1 7:51:42

1.推荐系统含义、目标

推荐系统根据用户的历史、社交、上下文环境等信息去判断用户当前感兴趣的内容。

推荐系统的业务:

  • 物料组装:生产广告,实现文案、图片等内容的个性化
  • 物料召回:在大量内容中召回一个子集作为推荐的内容
  • 物料排序:将召回的子集的内容按照某种标准进行精细排序
  • 运营策略:加入一些运营策略进行一部分的重新排序,再下发内容

算法:
召回、排序。

召回的算法多种多样:itemCF、userCF、关联规则、embedding、序列匹配、同类型收集等等。
排序的算法可以从多个角度来描述。排序算法可以分成五个部分:
构造样本、设计模型、确定目标函数、选择优化方法、评估。

在这里插入图片描述

2. 召回模型

  • 基于商品内容:比如食物A和食物B,对于它们价格、味道、保质期、品牌等维度,可以计算它们的相似程度,可以想象,我买了包子,很有可能顺路带一盒水饺回家。
    优点:冷启动,其实只要你有商品的数据,在业务初期用户数据不多的情况下,也可以做推荐
    缺点:预处理复杂,任何一件商品,维度可以说至少可以上百,如何选取合适的维度进行计算,设计到工程经验,这些也是花钱买不到的
    典型:亚马逊早期的推荐系统

  • 基于关联规则:最常见的就是通过用户购买的习惯,经典的就是“啤酒尿布”的案例,但是实际运营中这种方法运用的也是最少的,首先要做关联规则,数据量一定要充足,否则置信度太低,当数据量上升了,我们有更多优秀的方法,可以说没有什么亮点,业内的算法有apriori、ftgrowth之类的
    优点:简单易操作,上手速度快,部署起来也非常方便
    缺点:需要有较多的数据,精度效果一般
    典型:早期运营商的套餐推荐

  • 基于物品的协同推荐:假设物品A被小张、小明、小董买过,物品B被小红、小丽、小晨买过,物品C被小张、小明、小李买过;直观的看来,物品A和物品C的购买人群相似度更高(相对于物品B),现在我们可以对小董推荐物品C,小李推荐物品A,这个推荐算法比较成熟,运用的公司也比较多
    优点:相对精准,结果可解释性强,副产物可以得出商品热门排序
    缺点:计算复杂,数据存储瓶颈,冷门物品推荐效果差
    典型:早期一号店商品推荐

  • 基于用户的协同推荐:假设用户A买过可乐、雪碧、火锅底料,用户B买过卫生纸、衣服、鞋,用户C买过火锅、果汁、七喜;直观上来看,用户A和用户C相似度更高(相对于用户B),现在我们可以对用户A推荐用户C买过的其他东西,对用户C推荐用户A买过买过的其他东西,优缺点与基于物品的协同推荐类似,不重复了。

  • 基于模型的推荐:svd++、特征值分解、概率图、聚分类等等。比如潜在因子分解模型,将用户的购买行为的矩阵拆分成两组权重矩阵的乘积,一组矩阵代表用户的行为特征,一组矩阵代表商品的重要性,在用户推荐过程中,计算该用户在历史训练矩阵下的各商品的可能性进行推荐。
    优点:精准,对于冷门的商品也有很不错的推荐效果
    缺点:计算量非常大,矩阵拆分的效能及能力瓶颈一直是受约束的
    典型:惠普的电脑推荐

  • 基于时序的推荐:这个比较特别,在电商运用的少,在Twitter,Facebook,豆瓣运用的比较多,就是只有赞同和反对的情况下,怎么进行评论排序,详细的可以参见我之前写的一篇文章:应用:推荐系统-威尔逊区间法

  • 基于深度学习的推荐:现在比较火的CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)都有运用在推荐上面的例子,但是都还是试验阶段,但是有个基于word2vec的方法已经相对比较成熟,也是我们今天介绍的重点。
    优点:推荐效果非常精准,所需要的基础存储资源较少
    缺点:工程运用不成熟,模型训练调参技巧难
    典型:当前电商的会员商品推荐

基于主题模型的推荐
一篇文章拿到标题后,基于主题模型,基于LDA或者LSI可以把它生成一个向量。
基于这个向量得到关于主题的分布,计算它的相似度,基于这个相似度我们取topN可以得到一个推荐结果。

在这里插入图片描述


参考:

  1. 作者:Jachin;
  2. 阿里技术;
  3. 个性化推荐系统;
  4. 应用:深度学习下的电商商品推荐1.常见算法套路2.item2vec的工程引入3.python代码实现;

http://chatgpt.dhexx.cn/article/DOqcptFl.shtml

相关文章

CSDN个性化推荐系统-负反馈测试

文章目录 前言一、uc不感兴趣标签过滤测试1.uc不感兴趣标签获取(uc_unlike_tag_list)1.1个人中心界面1.2从标签中可以发现什么?1.3与研发确认点1.4设计开发1.5接口获取结果 2.推荐流文章标签获取(tag_list)2.1部分代码2.2基本标签校验2.3基本标签校验结果 3.推荐流u…

个性化推荐系统设计(2.1)——推荐算法介绍

协同过滤算法 协同过滤(Collaborative filtering, CF)算法是目前个性化推荐系统比较流行的算法之一。 协同算法分为两个基本算法:基于用户的协同过滤(UserCF)和基于项目的协同过滤(ItemCF)。 基于属性的推荐算法 基于…

[推荐系统]基于个性化推荐系统研究与实现(1)

目 录 一、搜索引擎与推荐系统 二、推荐系统原理与算法 2.1 Jaccard系数 2.2 余弦相似度 三、数据定向爬取及电影数据集 3.1 爬取近七日天气预报数据存入DB数据库,分为五步完成。 3.2 爬取豆瓣电影数据集存入CSV文件,分四步。 3.3 电影&#xf…

如何支持研发对CSDN个性化推荐系统重构

目录 大地图工具构建数据治理保持发布重视测试小结引用 一个以内容服务为主的软件,它的推荐系统在数据侧对软件产生着举足轻重的作用。数据的三个方面决定了这个内容软件的档次。 数据的质量好坏数据和用户需求的相关性好坏数据的层次体系好坏 通常,我…

智能个性化推荐系统设计

推荐系统构成 * 召回层 - 对海量的数据进行召回 * 排序层 - 对召回后的数据进行排序,排序结果返回给用户 推荐系统架构 基于物品的推荐系统架构 基于用户的推荐系统架构

个性化推荐系统设计(4.1)——案例分析

在过去的十年中,神经网络已经取得了巨大的飞跃。如今,神经网络已经得以广泛应用,并逐渐取代传统的机器学习方法。 接下来,我要介绍一下YouTube如何使用深度学习方法来做个性化推荐。 由于体量庞大、动态库和各种观察不到的外部因素…

141.如何个性化推荐系统设计-1

141.1 什么是个性化推荐系统? 个性化推荐系统就是根据用户的历史,社交关系,兴趣点,上下文环境等信息去判断用户当前需要或潜在感兴趣的内容的一类应用。大数据时代,我们的生活的方方面面都出现了信息过载的问题&#…

下一代个性化推荐系统

本文结合技术及社会需求发展的大背景,讲述了当前推荐系统的价值及所面临的挑战,并指出了下一代个性化推荐系统的设计思路及需要注意的问题。 作为个性化推荐系统核心的协同过滤(Collabora-tive Filtering)算法,是Goldb…

基于大数据的个性化推荐系统

随着互联网时代的发展和大数据时代的到来,人们逐渐从信息匮乏的时代走入了信息过载的时代。为了让用户从海量信息中高效地获取自己所需的信息,推荐系统应运而生。 推荐系统的主要任务就是联系用户和信息,它一方面帮助用户发现对自己有价值的信息,另一方面让信息能够展现在…

CSDN 个性化推荐系统的设计和演进

个性化推荐项目 个性化推荐的设计和演进项目概览项目梳理依赖管理实现代码的重构和改进持续演化 个性化推荐的设计和演进 CSDN 的个性化推荐系统,是从既有的推荐项目中剥离出来的一个子项目,这个项目随后移交到了我们AI组。在近一年的时间内&#xff0c…

【个性化推荐系统】简介

个性化推荐系统-简介 1. 推荐系统简介2. 推荐系统产生背景3. 推荐系统的作用4. 推荐系统和Web项目的区别 1. 推荐系统简介 ​ 个性化推荐 (推荐系统) 经历了多年的发展,已经成为互联网产品的标配,也是AI成功落地的分支之一,在电商(淘宝/京东…

个性化推荐系统研究综述

从最初接触个性化推荐系统已过去六天。今天是第七天,完全可以对前六日的学习做出复盘。推荐系统并没有如同网络上那般盛传的玄秘深晦,而是直白到令人一眼看穿。 本文从六个层面总结个性化推荐系统: 在用户建模上,详细总结了用户…

个性化推荐系统实践应用

个性化推荐已经成为现代人们生活的一部分, “猜你喜欢”、“相关阅读”你一定并不陌生。计算机如何做到对用户投其所好?企业在做个性化推荐时要如何精准把握用户兴趣?如何解决冷启动问题?如何避免推荐结果的单调与重复&#xff1f…

新闻个性化推荐系统

新闻个性化推荐系统 一、绪论及背景1.1、绪论1.2、背景1.3、发展历史 二、需求分析2.1、功能需求2.1.1、用户功能需求2.1.2、运营功能需求2.1.3、算法功能需求 2.2、非功能需求2.2.1、性能需求2.2.2、准确性需求2.2.3、稳定性需求2.2.4、可靠性需求 三、详细设计3.1、系统结构设…

【推荐系统】什么是好的推荐系统?个性化和非个性化推荐

最近在写一些关于推荐系统的介绍,找了不少案例及资料,总觉得不够具体及深入,没有一些可作为基础及科普类,于是萌生自己来写一篇试试。 定义:推荐系统是信息过滤系统的子类,旨在预测用户对产品或服务的“评…

个性推荐①——系统总结个性化推荐系统

个性推荐系列目录: 个性推荐②—基于用户协同过滤算法原及优化方案 个性推荐③—基于物品的协同过滤算法及优化方案 本文是整理于个性推荐经典之作《推荐系统实战》,将会以十个大家最想问的问题,揭开个性化推荐系统的神秘面纱(文…

个性化推荐算法(推荐系统)概要

读者读完本文后,你会知道每类范式常用的算法有哪些、实现的思路是什么、以及常用的应用场景。本文也可以作为读者落地推荐算法到真实推荐场景的参考指南。 一、推荐算法与产品介绍 什么是推荐系统? 在介绍推荐算法之前需要先介绍一下什么是信息过载。…

深度解析京东个性化推荐系统

向AI转型的程序员都关注了这个号👇👇👇 人工智能大数据与深度学习 公众号:datayx 作者简介: fisherman,时任推荐部门推荐系统负责人,负责推荐部门的架构设计及相关研发工作。Davidxiaozhi&…

个性化推荐系统实践

个性化推荐已经成为现代人们生活的一部分, “猜你喜欢”、“相关阅读”你一定并不陌生。计算机如何做到对用户投其所好?企业在做个性化推荐时要如何精准把握用户兴趣?如何解决冷启动问题?如何避免推荐结果的单调与重复&#xff1f…

Scratch Paper Minecraft

Paper Minecraft Scratch 也能创造奇迹 几乎还原了Paper Minecraft,我的世界2D版。| o | 注:文章末尾有下载链接。❤