tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况,等进度展示。
1.关于tqdm的简单用法
方法一:
import time
from tqdm import tqdmfor i in tqdm(range(200)):time.sleep(0.01)方法二:
针对迭代对象是range()的情况,tqdm还提供了简化版的trange()来代替tqdm(range()):import time
from tqdm import trangefor i in trange(200):time.sleep(0.01)

2.设置进度条的描述信息
import time
from tqdm import trange, tqdmpbar = tqdm(['a','b','c','d'])
for char in pbar:# 设置描述信息pbar.set_description("Processing %s" % char)time.sleep(1)
Processing b: 25%|██▌ | 1/4 [00:01<00:03, 1.00s/it]
Processing c: 50%|█████ | 2/4 [00:02<00:02, 1.00s/it]
Processing d: 75%|███████▌ | 3/4 [00:03<00:01, 1.00s/it]
Processing d: 100%|██████████| 4/4 [00:04<00:00, 1.00s/it]
3.手动控制进度条
方法1:
import time
from tqdm import tqdm# 一共200个,每次更新10,一共更新20次
with tqdm(total=200) as pbar:# 设置描述for i in range(20):pbar.update(10)time.sleep(1)方法2:
import time
from tqdm import tqdm# total参数设置进度条的总长度
pbar = tqdm(total=200)
for i in range(20):
# 每次更新进度条的长度pbar.update(10)time.sleep(0.1)
# 关闭占用的资源
pbar.close()

0%|▌ | 10/200 [00:00<00:5, 18.00it/s]
5%|▌ | 10/200 [00:00<00:10, 18.87it/s]
10%|█ | 20/200 [00:01<00:09, 19.90it/s]
15%|█▌ | 30/200 [00:02<00:16, 10.23it/s]
25%|██▌ | 50/200 [00:04<00:12, 12.03it/s]
30%|███▌ | 70/200 [00:06<00:11, 10.87it/s]
35%|███▌ | 70/200 [00:06<00:11, 10.88it/s]
40%|████ | 80/200 [00:07<00:11, 10.42it/s]
.....
75%|███████▌ | 150/200 [00:14<00:04, 10.02it/s]
95%|█████████▌| 190/200 [00:18<00:01, 9.97it/s]
100%|██████████| 200/200 [00:20<00:00, 9.96it/s]





![[Python] 实现文本进度条](https://img-blog.csdnimg.cn/177e8d6701214e4798654baf044bb76c.gif#pic_center)










