线程之间的通信方式

article/2025/9/24 17:53:01

前言

我只是个搬运工,尊重原作者的劳动成果,本文来源下列文章链接:
https://zhuanlan.zhihu.com/p/129374075
https://blog.csdn.net/jisuanji12306/article/details/86363390

线程之间为什么要通信?

通信的目的是为了更好的协作,线程无论是交替式执行,还是接力式执行,都需要进行通信告知。首先,要短信线程间通信的模型有两种:共享内存和消息传递,以下方式都是基本这两种模型来实现的。我们来基本一道面试常见的题目来分析:

题目:有两个线程A、B,A线程向一个集合里面依次添加元素"abc"字符串,一共添加十次,当添加到第五次的时候,希望B线程能够收到A线程的通知,然后B线程执行相关的业务操作。

方式一:使用 volatile 关键字

基于 volatile 关键字来实现线程间相互通信是使用共享内存的思想,大致意思就是多个线程同时监听一个变量,当这个变量发生变化的时候 ,线程能够感知并执行相应的业务。这也是最简单的一种实现方式
(对这个关键字还不了解的,可以看看这个voatile详解)
volatile有两大特性,一是可见性,二是有序性,禁止指令重排序,其中可见性就是可以让线程之间进行通信。

volatile语义保证线程可见性有两个原则保证

所有volatile修饰的变量一旦被某个线程更改,必须立即刷新到主内存
所有volatile修饰的变量在使用之前必须重新读取主内存的值
volatile保证可见性原理图
在这里插入图片描述

public class TestSync {// 定义一个共享变量来实现通信,它需要是volatile修饰,否则线程不能及时感知static volatile boolean notice = false;public static void main(String[] args) {List<String>  list = new ArrayList<>();// 实现线程AThread threadA = new Thread(() -> {for (int i = 1; i <= 10; i++) {list.add("abc");System.out.println("线程A向list中添加一个元素,此时list中的元素个数为:" + list.size());try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}if (list.size() == 5)notice = true;}});// 实现线程BThread threadB = new Thread(() -> {while (true) {if (notice) {System.out.println("线程B收到通知,开始执行自己的业务...");break;}}});// 需要先启动线程BthreadB.start();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}// 再启动线程AthreadA.start();}
}

在这里插入图片描述

方式二:使用Object类的wait() 和 notify() 方法

众所周知,Object类提供了线程间通信的方法:wait()、notify()、notifyaAl(),它们是多线程通信的基础,而这种实现方式的思想自然是线程间通信。注意: wait和 notify、notifyaAl必须配合synchronized使用,wait方法释放锁,notify方法不释放锁

wait() 作用是使当前执行该代码的线程进入该对象锁的阻塞队列中进行等待(立即释放锁,进入等待锁的阻塞队列,下次被唤醒时,会接着往下执行)。
线程调用了对象锁的 wait 线程运行完毕以后,它会立即释放掉该对象锁。此时如果没有其他线程调用该对象锁的 notify 方法,则该调用过wait方法的线程由于没有得到该对象锁的通知,还会继续阻塞在 wait 状态,直到这个有线程调用此对象锁的 notify 或 notifyAll。

wait(long) 方法的功能是等待某一时间内是否有线程对锁进行唤醒,如果超过这个时间则自动唤醒。

notify() 方法作用是随机通知一个当前对象锁的阻塞队列中的线程(即调用过wait方法的线程)。

notifyAll() 方法作用是唤醒当前对象锁阻塞队列中的所有线程(即调用过wait方法的线程)

public class TestSync {public static void main(String[] args) {// 定义一个锁对象Object lock = new Object();List<String>  list = new ArrayList<>();// 实现线程AThread threadA = new Thread(() -> {synchronized (lock) {for (int i = 1; i <= 10; i++) {list.add("abc");System.out.println("线程A向list中添加一个元素,此时list中的元素个数为:" + list.size());try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}if (list.size() == 5)lock.notify();// 唤醒B线程}}});// 实现线程BThread threadB = new Thread(() -> {while (true) {synchronized (lock) {if (list.size() != 5) {try {lock.wait();} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("线程B收到通知,开始执行自己的业务...");}}});// 需要先启动线程BthreadB.start();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}// 再启动线程AthreadA.start();}
}

在这里插入图片描述
由打印结果截图可知,在线程A发出notify()唤醒通知之后,依然是走完了自己线程的业务之后,线程B才开始执行,这也正好说明了,在执行 notify 方法后,当前线程不会马上释放该对象锁,被通知的线程也并不能马上获取该对象锁,要等到执行 notify() 方法的线程将程序执行完,也就是退出 synchronized 代码块后,当前线程才会释放锁,被通知线程才可以获取该对象锁。

方式三:使用JUC工具类 CountDownLatch

jdk1.5之后在java.util.concurrent包下提供了很多并发编程相关的工具类,简化了我们的并发编程代码的书写,CountDownLatch基于AQS框架,相当于也是维护了一个线程间共享变量state

public class TestSync {public static void main(String[] args) {CountDownLatch countDownLatch = new CountDownLatch(1);List<String>  list = new ArrayList<>();// 实现线程AThread threadA = new Thread(() -> {for (int i = 1; i <= 10; i++) {list.add("abc");System.out.println("线程A向list中添加一个元素,此时list中的元素个数为:" + list.size());try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}if (list.size() == 5)countDownLatch.countDown();}});// 实现线程BThread threadB = new Thread(() -> {while (true) {if (list.size() != 5) {try {countDownLatch.await();} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("线程B收到通知,开始执行自己的业务...");break;}});// 需要先启动线程BthreadB.start();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}// 再启动线程AthreadA.start();}
}

在这里插入图片描述

方式四:使用 ReentrantLock 结合 Condition

Condition接口对应的方法:

void await() 使线程进入等待状态直达其他线程使用该Condition调用signal()或者signalAll()方法。同时该线程可以响应中断
void awaitUninterruptibly() 与上述一样,但该方法使得线程不响应中断
long awaitNanos(long nanosTimeout) 超时式的等待如果返回为0或者负数表示已经超时
boolean awaitUntil(Date deadline) 到指定的时间如果依然未被通知,中断则返回false
void signal() 与 void signalAll()唤醒等待,被唤醒的线程返回时必须获取锁才行。

public class TestSync {public static void main(String[] args) {ReentrantLock lock = new ReentrantLock();Condition condition = lock.newCondition();List<String> list = new ArrayList<>();// 实现线程AThread threadA = new Thread(() -> {lock.lock();for (int i = 1; i <= 10; i++) {list.add("abc");System.out.println("线程A向list中添加一个元素,此时list中的元素个数为:" + list.size());try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}if (list.size() == 5)condition.signal();}lock.unlock();});// 实现线程BThread threadB = new Thread(() -> {lock.lock();if (list.size() != 5) {try {condition.await();} catch (InterruptedException e) {e.printStackTrace();}}System.out.println("线程B收到通知,开始执行自己的业务...");lock.unlock();});threadB.start();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}threadA.start();}
}

在这里插入图片描述
显然这种方式使用起来并不是很好,代码编写复杂,而且线程B在被A唤醒之后由于没有获取锁还是不能立即执行,也就是说,A在唤醒操作之后,并不释放锁。这种方法跟 Object 的 wait() 和 notify() 一样。

方式五:基本LockSupport实现线程间的阻塞和唤醒

LockSupport 是一种非常灵活的实现线程间阻塞和唤醒的工具,使用它不用关注是等待线程先进行还是唤醒线程先运行,但是得知道线程的名字。

public class TestSync {public static void main(String[] args) {List<String> list = new ArrayList<>();// 实现线程Bfinal Thread threadB = new Thread(() -> {if (list.size() != 5) {LockSupport.park();}System.out.println("线程B收到通知,开始执行自己的业务...");});// 实现线程AThread threadA = new Thread(() -> {for (int i = 1; i <= 10; i++) {list.add("abc");System.out.println("线程A向list中添加一个元素,此时list中的元素个数为:" + list.size());try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}if (list.size() == 5)LockSupport.unpark(threadB);}});threadA.start();threadB.start();}
}

在这里插入图片描述

经典消费者和生产者的问题

测试的main方法:

public class ThreadTest12 {  public static void main(String[] args) {       String lock = new String();        P p = new P(lock);        C c = new C(lock);        new Thread(new Runnable() {            @Override            public void run() {                while (true) {                    p.setValue();                }            }        }).start();        new Thread(new Runnable() {            @Override            public void run() {                while (true) {                    c.getVlue();                }            }        }).start();    }
}

生产者:

class P {    private String lock;   public P(String lock) {        super();        this.lock = lock;    }    public void setValue(){        try {            synchronized (lock){                if (!ValueObject.value.equals("")){                    lock.wait();                }                String value = System.currentTimeMillis() + "_" + System.nanoTime();                System.out.println("set 的值是 "+value);                ValueObject.value =  value;                lock.notify();            }        } catch (InterruptedException e) {            e.printStackTrace();        }    }
}

消费者:

class C {    private String lock;    public C(String lock) {        super();        this.lock = lock;    }    public void getVlue() {        try {            synchronized (lock) {                if (ValueObject.value.equals("")) {                    lock.wait();                }                System.out.println("get 的值是 " + ValueObject.value);                ValueObject.value = "";                lock.notify();            }        } catch (InterruptedException e) {            e.printStackTrace();        }    }
}

操作值

class ValueObject {    public static String value = "";
}

一个生产者和一个消费者,它们之间的通信是正常的,但修改为多个生产者和多个消费者,就会出现问题,修改部分源码如下:

public static void main(String[] args) {    String lock = new String();    P p = new P(lock);    C c = new C(lock);    for (int i = 0; i < 2; i++) {        new Thread(new Runnable() {            @Override            public void run() {                while (true) {                    p.setValue();                }            }        }).start();        new Thread(new Runnable() {            @Override            public void run() {                while (true) {                    c.getVlue();                }            }        }).start();    }
}

运行后,出现一直等待的假死状况。
在代码中确实已经通过 wait / notify 进行呈通信了,但不保证 notify 唤醒的是异类,也许是同类,比如“生产者”唤醒“生产者”,或“消费者”唤醒“消费者”这样的情况。如果按这样情况运行的比率积少成多,就会导致所有的线程都不能继续运行下去,大家都在等待,都呈 WAITING 状态,程序最后也就呈“假死”的状态,不能继续运行下去了。

要解决这个问题,只需要将notify换成notifyAll即可,每次都是唤醒所有线程。


http://chatgpt.dhexx.cn/article/BThlGtCw.shtml

相关文章

Java线程间的通信方式

文章目录 线程间通信的定义一、等待—通知&#xff08;1&#xff09;等待—通知机制的相关方法&#xff1a;&#xff08;2&#xff09;注意事项&#xff1a;&#xff08;4&#xff09;notify()方法的核心原理&#xff08;5&#xff09;等待—通知机制的经典范式&#xff08;6&a…

线程间实现通信的几种方式

目录 线程通信相关概述提出问题方式一&#xff1a;使用Object类的wait() 和 notify() 方法方式二&#xff1a;Lock 接口中的 newContition() 方法返回 Condition 对象&#xff0c;Condition 类也可以实现等待/通知模式方法三&#xff1a;使用 volatile 关键字方法四&#xff1a…

线程间的通信方式

对共享数据进行更改的时候&#xff0c;先到主内存中拷贝一份到本地内存中&#xff0c;然后进行数据的更改&#xff0c;再重新将数据刷到主内存&#xff0c;这中间的过程&#xff0c;其他线程是看不到的。 1、为什么需要线程通信 线程是操作系统调度的最小单位&#xff0c;有自…

进程和线程的几种通信方式

进程之间通信的几种方式 1. 管道&#xff1a;是内核里面的一串缓存 管道传输的数据是单向的&#xff0c;若相互进行通信的话&#xff0c;需要进行创建两个管道才行的。 2. 消息队列&#xff1a; 例如&#xff0c;A进程给B进程发送消息&#xff0c;A进程把数据放在对应的消息队…

线程的几种通信方式

目录 一、Object的wait()、notify()、notifyAll()方法 二、Condition的await()、signal()、signalAll()方法 三、CountDownLatch 四、CyclicBarrier 五、Semaphore 线程间的通信方式常用的有如下几种&#xff1a; Object的wait()、notify()、notifyAll()方法&#xff1b; …

线程间的通信方法

线程间的通信方法 1. 线程通信简介 一般而言&#xff0c;在一个应用程序&#xff08;即进程&#xff09;中&#xff0c;一个线程往往不是孤立存在的&#xff0c;常常需要和其它线程通信&#xff0c;以执行特定的任务。如主线程和次线程&#xff0c;次线程与次线程&#xff0c…

Matlab基本操作函数 abs函数

分享一下我老师大神的人工智能教程&#xff01;零基础&#xff0c;通俗易懂&#xff01;http://blog.csdn.net/jiangjunshow 也欢迎大家转载本篇文章。分享知识&#xff0c;造福人民&#xff0c;实现我们中华民族伟大复兴&#xff01; 1、abs函数&#xff1a;数值的绝对值和复数…

MATLAB中FFT的整理

作为一个资深的健忘症患者&#xff0c;需要把每次用都忘记的FFT问题进行整理。 FFT可将信号从时域转换到频域。 首先是一些简单常识&#xff1a; 采样周期&#xff1a;两次采样之间的时间间隔。 采样频率&#xff1a;1/采样周期。每秒采样的点数。&#xff08;注意&#xff1a…

matlab中abs函数,matlababs是什么意思 是是是什么意思

matlababs是什么意思 是是是什么意思以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧! matlab 中的abs函数什么意思 编程知识 matlab中的abs(x)是去绝对值的函数 例如:x=-1.23 abs(x) ans 1.23 以上即是取了-1.23…

Matlab 用法

MATLAB基础&#xff1a; 清除命令 clc 清空命令行的命令 clf 清除当前figure中的内容 clear 清除工作区变量 close all 关闭所有图形窗口 清除命令通常放在代码最前方&#xff0c;避免其他变量或代码的干扰 变量命名规则 ①以英文字母开头&#xff0c;可包含英文字母、…

abs 三种功能及代码详解 matlab函数

1.abs函数功能 求实数的绝对值、复数的模、字符串的ASCII值 2.基本用法 abs(x)函数是对数组元素进行绝对值处理的函数。 函数的定义域包括复数。 对于复数xab*i&#xff0c;有abs(x)sqrt(a2b2)。 3.代码 clc; clear all;a -7; b 12i; abs(a…

android 屏幕坐标总结

android 屏幕坐标好多个&#xff0c;有时候傻傻分不清楚&#xff0c;经常记错&#xff0c;然后只能一个个试。尴尬&#xff5e;&#xff5e; 把它们总结下来&#xff0c;以备不时之需嘿嘿。 一、视图坐标 最外面一层是屏幕&#xff0c;左上角是坐标原点&#xff0c;向右向…

【Unity3D】世界坐标与屏幕坐标

Unity3D由于是在三维世界中编程&#xff0c;而最终的结果是需要反馈到肉眼所示的2D屏幕之上的。这就产生了一种比较需要考虑的问题&#xff0c;尤其在一些涉及屏幕与Unity3D的3D世界交互的情况。网络上对于这方面的文字&#xff0c;大部分罗列了许许多多文字与代码或者API&…

Unity世界坐标转换屏幕坐标(测试)

下面展示一下上一篇说的两种实现方式打包文件在不同分辨率下的效果 1.WorldToScreenPoint 1920 * 1080 800 * 600 2.WorldToViewportPoint 1920 * 1080 800 * 600 总结 可以看到四种情况全部都显示正确&#xff0c;我们再看一下原来的代码 public Vector3 GetScreenPositio…

Unity 屏幕坐标转UI坐标

1&#xff1a;屏幕坐标转UI坐标 首先我们来明确下三个坐标概念&#xff1a; 世界坐标&#xff1a;指的是Transform组件的position字段 UI坐标&#xff1a;指的是RectTransform组件的anchoredPosition字段 屏幕坐标&#xff1a;指的是屏幕空间的坐标 (也可以说是相机空间的坐…

经纬度转换成屏幕坐标

学期projet总结&#xff1a; 当把点的数据和线的数据读进来之后&#xff0c;为了画出地图还有最重要的一步就是把实际的经纬度转换成屏幕像素点的坐标。在找老师讨论之前&#xff0c;我在网上查资料&#xff0c;找到了下边链接的文章&#xff0c;并按照这个方法画出了地图。 …

Unity-世界坐标与屏幕坐标

transform.position.x和transform.position.y的值含义是世界坐标。 世界坐标与屏幕坐标有时一样&#xff0c;有时不同&#xff0c;这和Canvas的渲染模式有关。 Canvas共有三种渲染模式 Screen Space - Overlay (此模式UGUI层一直在最上面&#xff0c;其他例如粒子等物体一直…

Unity 世界坐标、屏幕坐标、UGUI 坐标 相互转换

Unity 世界坐标、屏幕坐标、UGUI 坐标 相互转换 坐标转换是游戏开发过程中必不可少的环节 看下图 世界坐标、屏幕坐标、UI 坐标 三种坐标系的转换过程&#xff0c;此文章中的 UI 坐标特指 UGUI 坐标 从上图可以看到&#xff0c;世界坐标 和 UI 坐标 需要通过 屏幕坐标作为中间…

Android得到控件在屏幕中的坐标

getLocationOnScreen ,计算该视图在全局坐标系中的x,y值,(注意这个值是要从屏幕顶端算起,也就是索包括了通知栏的高度)//获取在当前屏幕内的绝对坐标 getLocationInWindow ,计算该视图在它所在的widnow的坐标x,y值,//获取在整个窗口内的绝对坐标 (不是很理解= =、) …

安卓 获取屏幕坐标(点击屏幕获取坐标)

工具下载&#xff1a; 实现原理&#xff1a;创建一个背景透明的Activity, 点击屏幕时获取坐标信息并显示。在悬浮窗中调用该Activity&#xff0c;可以获取所有界面的坐标信息。 package sc.tool.screen;import sc.tool.component.ActivityComponent; import android.content.Co…