相比LTE的上行物理信道,NB-IoT的上行物理信道可谓简化了很多,因此一些流程机制也改变很多。由于不需要在上行信道中传输CSI或者SR,因此在上行信道结构设计中也不需要专门保留上行控制共享信道。NB-IoT上行信道包含两种物理信道,一个是窄带物理上行共享信道(NPUSCH),另外一个是窄带物理随机接入信道(NPRACH),控制信息可以通过NPUSCH复用传输,这意味着NPUSCH不仅承载上行数据业务,同时也肩负了类似LTE中PUCCH承载一些上行反馈信息的功能。另外,由于没有了上行资源调度的概念,同时为了简化帧结构,作为全频段信道估计用的Sounding Reference Signal(SRS)也被省略掉了,上行物理信号只保留了窄带解调参考信号,这样不仅简化了物理层流程,同时也将有限的带宽资源尽可能预留给了数据传输。
NPUSCH(Narrowband Physical uplink shared channel)
上行传输有两种模式,一种是single-tone,另一种是multi-tone。对于single-tone传输模式,可以有两种子载波间隔3.75kHz和15kHz,资源块在这里并没有定义,这意味着并不以资源块作为基本调度单位。如果子载波间隔是15kHz,那么上行包含连续12个子载波,如果子载波间隔是3.75kHz,那么上行包含连续48个子载波。我们知道,对于通过OFDM调制的数据信道,如果在同样的带宽下,子载波间隔越小,相干带宽越大,那么数据传输抗多径干扰的效果越好,数据传输的效率更高,当然,考虑到通过IFFT的计算效率,子载波也不能设置的无限小。同时,也要考虑与周围LTE大网的频带兼容性,选取更小的子载波也需要考虑与15kHz的兼容性。当上行采取single tone 3.75kHz模式传输数据时,物理层帧结构最小单位为基本时长2ms时隙,该时隙与FDD LTE子帧保持对齐。每个时隙包含7个OFDM符号,每个符号包含8448个Ts(时域采样),其中这8448个Ts含有256Ts个循环校验前缀(这意味着IFFT的计算点数是8448-256=8192个,恰好是2048(15kHz)的4倍),剩下的时域长度(2304Ts)作为保护带宽。single-tone和multi-tone的15kHz模式与FDD LTE的帧结构是保持一致的,最小单位是时长为0.5ms的时隙。而区别在于NB-IoT没有调度资源块,single-tone以12个连续子载波进行传输,multi-tone可以分别按照3,6,12个连续子载波分组进行数据传输。
相比LTE中以PRB对进行基本资源调度单位,NB-IoT的上行共享物理信道NPUSCH的资源单位是以灵活的时频资源组合进行调度的,调度的基本单位称作资源单位(Resource Unit)。NPUSCH有两种传输格式,两种传输格式对应的资源单位不同,传输的内容也不一样。NPUSCH格式1用来承载上行共享传输信道UL-SCH,传输用户数据或者信令,UL-SCH传输块可以通过一个或者几个物理资源单位进行调度发送。所占资源单位包含single-tone和multi-tone两种格式。其中
single-tone 3.75kHz 32ms, 15kHz 8ms;
multi-tone 15kHz 3子载波 4ms,6子载波 2ms,12子载波 1ms。
NPUSCH格式2用来承载上行控制信息(物理层),例如ACK/NAK应答。根据3.75kHz 8ms或者15kHz 2ms分别进行调度发送的。
NPUSCH信道基本调度资源单位(Resource Unit)
NB-IoT没有特定的上行控制信道,控制信息也复用在上行共享信道(NPUSCH)中发送。所谓的控制信息指的是与NPDSCH对应的ACK/NAK的消息,并不像LTE大网那样还需要传输表征信道条件的CSI以及申请调度资源的SR(Scheduling Request)。
NB-IoT上行物理信道进行了简化
<