Stochastic Image Denoising By Sampling from the Posterior Distribution (Paper reading)

article/2025/10/19 17:16:23

Stochastic Image Denoising By Sampling from the Posterior Distribution (Paper reading)

Bahjat Kawar, Haifa(Israel), ICCV Workshop2021, Cited:22, Code:无, Paper.

目录子

  • Stochastic Image Denoising By Sampling from the Posterior Distribution (Paper reading)
    • 1. 前言
    • 2. 整体思想
    • 3. 方法
      • 3.1 后验分布的分数函数和去噪算法
      • 3.2 去噪实验
    • 总结

1. 前言

对于严重的噪音水平,最小均方误差 (MMSE) 解决方案可能会导致模糊输出图像。本文提出了一种新颖的随机去噪方法,该方法可产生可行且高感知质量的结果,同时保持较小的 MSE。本文的方法采用 Langevin 动力学,它依赖于重复应用任何给定的 MMSE 降噪器,通过从后验分布采样获得重建图像。

2. 整体思想

整体思想是条件扩散模型,也就是在原始扩散模型上加入了梯度修正,其他和扩散模型一致。

3. 方法

从概率分布中生成样本的方法之一是利用Langevin热力学的Markov Chain Monte Carlo方法:
x t + 1 = x t + α ∇ x l o g p ( x t ) + 2 α z t (1) x_{t+1}=x_{t}+\alpha \nabla_{x}logp(x_{t})+\sqrt{2\alpha}z_{t} \tag{1} xt+1=xt+αxlogp(xt)+2α zt(1)
去噪任务可以表示为: y = x + n y=x+n y=x+n,其中 x ∼ p ( x ) x\sim p(x) xp(x),是干净图像, n ∼ N ( 0 , σ 0 2 I ) n\sim N(0,\sigma_{0}^{2}I) nN(0,σ02I)是已知噪声强度的加性高斯白噪声,去噪的目标是复原 x x x。虽然p(x)是未知的,但是从Solving Linear Inverse Problems Using The Prior Implicit in a Denoiser这篇文章中可以知道,我们能够从一个MMSE的去噪器中获得 p ( x ) p(x) p(x)。本文提出在给定噪声输入图像的情况下,通过从后验分布中采样来复原 x x x,即 p ( x ∣ y ) p(x|y) p(xy)

本文基于退火Langevin动力学算法解决图像去噪问题。退火Langevin动力学算法通过分数函数 ∇ x l o g p ( x ~ ) \nabla_{x}logp(\tilde{x}) xlogp(x~) p ( x ) p(x) p(x)中进行采样,对于不同大小的 σ \sigma σ,其中 x ~ = x + z , z ∼ N ( 0 , σ 2 I ) \tilde{x}=x+z,z\sim N(0,\sigma^{2}I) x~=x+z,zN(0,σ2I)。为了解决去噪问题,我们需要估计后验的分数函数 ∇ x ~ l o g p ( x ~ ∣ y ) \nabla_{\tilde{x}}logp(\tilde{x}|y) x~logp(x~y)

3.1 后验分布的分数函数和去噪算法

我们考虑噪声图像中的噪声是逐步添加上去的,即先固定一组噪声强度序列 { σ i } i = 0 L + 1 \left \{\sigma_{i} \right\}_{i=0}^{L+1} {σi}i=0L+1,如: σ 0 > σ 1 > . . . > σ L > σ L + 1 = 0 \sigma_{0}>\sigma_{1}>...>\sigma_{L}>\sigma_{L+1}=0 σ0>σ1>...>σL>σL+1=0,这里的 σ 0 \sigma_{0} σ0 y y y的噪声强度:
x ~ L = x + z L x ~ L − 1 = x ~ L + z L − 1 x ~ L − 2 = x ~ L − 1 + z L − 2 ⋮ x ~ 1 = x ~ 2 + z 1 y = x ~ 0 = x ~ 1 + z 0 (2) \begin{aligned} \tilde{x}_{L}&=x+z_{L}\\ \tilde{x}_{L-1}&=\tilde{x}_{L}+z_{L-1}\\ \tilde{x}_{L-2}&=\tilde{x}_{L-1}+z_{L-2}\\ \vdots\\ \tag{2} \tilde{x}_{1}&=\tilde{x}_{2}+z_{1}\\ y=\tilde{x}_{0}&=\tilde{x}_{1}+z_{0} \end{aligned} x~Lx~L1x~L2x~1y=x~0=x+zL=x~L+zL1=x~L1+zL2=x~2+z1=x~1+z0(2)
其中, z i ∼ N ( 0 , ( σ i 2 − σ i + 1 2 ) I ) z_{i}\sim N(0, (\sigma_{i}^{2}-\sigma_{i+1}^{2})I) ziN(0,(σi2σi+12)I),从上述过程可以得到:
y = x ~ 0 = x + ∑ i = 0 L z i (3) y=\tilde{x}_{0}=x+\sum_{i=0}^{L}z_{i} \tag{3} y=x~0=x+i=0Lzi(3)
其中, ∑ i = 0 L z i ∼ N ( 0 , σ 0 2 I ) \sum_{i=0}^{L}z_{i}\sim N(0, \sigma_{0}^{2}I) i=0LziN(0,σ02I),注意到 y − x ~ i = ∑ j = 0 i − 1 z j y-\tilde{x}_{i}=\sum_{j=0}^{i-1}z_{j} yx~i=j=0i1zj,则 ∑ j = 0 i − 1 z j ∼ N ( 0 , ( σ 0 2 − σ i 2 ) I ) \sum_{j=0}^{i-1}z_{j}\sim N(0,(\sigma_{0}^{2}-\sigma_{i}^{2})I) j=0i1zjN(0,(σ02σi2)I),可以理解为在噪声图上减去当前 t t t时刻状态后的剩余噪声量。后面对于任意 i i i时刻的 x i x_{i} xi x ~ \tilde{x} x~来简化表示。接下来求 ∇ x ~ l o g p ( x ~ ∣ y ) \nabla_{\tilde{x}}logp(\tilde{x}|y) x~logp(x~y)
∇ x ~ l o g p ( x ~ ∣ y ) = ∇ x ~ l o g p ( y ∣ x ~ ) p ( x ~ ) 1 p ( y ) = ∇ x ~ [ l o g p ( y ∣ x ~ ) + l o g p ( x ~ ) + l o g 1 p ( y ) ] \nabla_{\tilde{x}}logp(\tilde{x}|y)=\nabla_{\tilde{x}}logp(y|\tilde{x})p(\tilde{x})\frac{1}{p(y)}=\nabla_{\tilde{x}}\left [logp(y|\tilde{x})+logp(\tilde{x})+log\frac{1}{p(y)}\right] x~logp(x~y)=x~logp(yx~)p(x~)p(y)1=x~[logp(yx~)+logp(x~)+logp(y)1]
y y y是一个不依赖于 x ~ \tilde{x} x~的固定观测,最后一项的梯度为0,则
∇ x ~ l o g p ( x ~ ∣ y ) = ∇ x ~ l o g p ( y ∣ x ~ ) + ∇ x ~ l o g p ( x ~ ) (4) \nabla_{\tilde{x}}logp(\tilde{x}|y)=\nabla_{\tilde{x}}logp(y|\tilde{x})+\nabla_{\tilde{x}}logp(\tilde{x}) \tag{4} x~logp(x~y)=x~logp(yx~)+x~logp(x~)(4)
其中,第一项中, p ( y ∣ x ~ ) = g ( y − x ~ ) p(y|\tilde{x})=g(y-\tilde{x}) p(yx~)=g(yx~),则:
∇ x ~ l o g p ( y ∣ x ~ ) = ∇ x ~ l o g [ 1 2 π ( σ 0 2 − σ i 2 ) e x p [ − 1 2 ∣ ∣ y − x ~ ∣ ∣ 2 ( σ 0 2 − σ i 2 ) ] ] = y − x ~ σ 0 2 − σ i 2 \nabla_{\tilde{x}}logp(y|\tilde{x})=\nabla_{\tilde{x}}log\left [\frac{1}{\sqrt{2\pi(\sigma_{0}^{2}-\sigma_{i}^{2})}}exp\left[-\frac{1}{2}\frac{||y-\tilde{x}||^{2}}{(\sigma_{0}^{2}-\sigma_{i}^{2})}\right] \right]=\frac{y-\tilde{x}}{\sigma_{0}^{2}-\sigma_{i}^{2}} x~logp(yx~)=x~log[2π(σ02σi2) 1exp[21(σ02σi2)yx~2]]=σ02σi2yx~
因此:
∇ x ~ l o g p ( x ~ ∣ y ) = ∇ x ~ l o g p ( x ~ ) + y − x ~ σ 0 2 − σ i 2 (5) \nabla_{\tilde{x}}logp(\tilde{x}|y)=\nabla_{\tilde{x}}logp(\tilde{x})+\frac{y-\tilde{x}}{\sigma_{0}^{2}-\sigma_{i}^{2}} \tag{5} x~logp(x~y)=x~logp(x~)+σ02σi2yx~(5)
这篇文章中Solving Linear Inverse Problems Using The Prior Implicit in a Denoiser,我们知道分数函数和MMSE去噪器的联系,既训练一个网络来估计分数函数可以解释为去噪器估计MMSE
∇ x ~ l o g p ( x ~ ) = x ^ ( x ~ ) − x ~ σ i 2 \nabla_{\tilde{x}}logp(\tilde{x})= \frac{\hat{x}(\tilde{x})-\tilde{x}}{\sigma_{i}^{2}} x~logp(x~)=σi2x^(x~)x~
其中 x ^ ( x ~ ) = E ( x ∣ x ~ ) \hat{x}(\tilde{x})=\mathbb{E}(x|\tilde{x}) x^(x~)=E(xx~)是一个MMSE去噪器。随机去噪算法如下:
在这里插入图片描述

3.2 去噪实验

去噪网络选择 noise conditional score network version 2 (NCSNv2)。针对网络的训练,本文特意强调,是像图像合成(image synthesis)任务一样选择同一类别的数据集(CelebA, FFHQ, LSUN)对网络进行训练而不是自然图像集。超参数的设定保持和Improved techniques for training score-based generative models该文章一致。实验结果如下:
在这里插入图片描述
虽然说,相对于MMSE去噪器,生成去噪算法更真实,更具细节,但是相对于MMSE的去噪平均来说,生成算法具有不同的解,如左边的图3,会有机会不同的4张脸,这对于某些特殊的任务来说是不友好的。
在这里插入图片描述
在这里插入图片描述
从这里我们就能看到生成去噪器的优势了,图像更自然。

总结

这里假设了噪声强度 σ 0 \sigma_{0} σ0,也就是知道了噪声强度这个强先验,在模拟噪声数据集上的表现良好,但是该算法还无法处理真实噪声,或者盲噪声,这是扩散模型应用low-level的一个重要目标


http://chatgpt.dhexx.cn/article/8vynv1jo.shtml

相关文章

GAN论文精读 P2GAN: Posterior Promoted GAN 用鉴别器产生的后验分布来提升生成器

《Posterior Promoted GAN with Distribution Discriminator for Unsupervised Image Synthesis》是大连理工学者发表的文章,被2021年CVPR收录。 文章地址:https://ieeexplore.ieee.org/document/9578672 本篇文章是阅读这篇论文的精读笔记。 一、原文…

先验、后验与似然

在学习SLAM 14讲第六章时,看到三个概念,有些不太了解,查阅资料后有了一些自己的理解。 三个概念存在于贝叶斯公式中 表示先验概率Prior,表示后验概率posterior,表示似然likelihood 上式可以写为 下面分别对三个概念进…

Prior 、Posterior 和 Likelihood 的理解与几种表达方式

Prior 、Posterior 和 Likelihood 的理解与几种表达方式 (下载图片可以看大图。)

Windows作为NTP同步时间的服务器时的设置

1.先关闭Windows系统自带的防火墙; 2. 在桌面上右击“计算机”, 选择“管理”, 然后选择“服务”。 具体如图所示 2. 选中“Windows Time”,设置为开启,这样就可以将“Windows Time”这一个服务打开。 3. “开始”--》“运…

NTP时钟服务器推荐-国内时间服务器顶尖设备

电子钟时间服务器在物联网应用中起到了关键的作用,它能够为各种智能设备提供准确的时间参考,确保设备之间的协同工作和数据的准确传输。无论是智能家居、智能工厂还是智慧城市,电子钟时间服务器都是不可或缺的一部分。 一、产品卖点 时间服…

NTP同步时间失败。Linux作为客户端,Windows作为NTP时钟源服务端。

使用windows作NTP时钟源,NTP同步时间失败 【关 键 词】:NTP,时钟源,windows时钟源,同步时间失败 【故障类型】:操作维护->其他 【适用版本】:Linux 【问题描述】:windows做时钟…

如何在windows10 搭建 NTP 时间服务器

windows本身是可以作为NTP时间同步服务器使用的,本文介绍一下如何在win10上配置NTP时间同步服务器。 如何在windows10 搭建 NTP 时间服务器 工具/原料 系统版本:win10版本 [10.0.17134.706] 方法/步骤 使用组合键WIN R 启动运行窗口,在…

Linux服务器NTP客户端时钟同步配置方法

前提说明:配置客户端NTP时候,必须要有一台时钟服务器,可以是服务器搭建的,也可以是购买的时钟设备。我这里使用临时的时钟服务器IP地址10.10.4.100 步骤如下: 1 首先在客户端服务器中ping一下时钟的IP地址是否网络可通…

NTP时钟服务器(PTP服务器)无法同步的排查方法

NTP时钟服务器(PTP服务器)无法同步的排查方法 NTP时钟服务器(PTP服务器)无法同步的排查方法 NTP系统是典型的C-S模型,一般将整个系统分为服务器,网络和客户端三个区域,因NTP时间服务器一般在出厂时已经测试,并设置为可使用&#…

NTP时间服务器同步时钟系统安装汇总分享

在现代科技发展的背景下,各种设备的时间同步变得越来越重要。同步时钟管理系统的应用可以让多个设备在时间上保持一致,提高工作效率和安全性,为各个行业的发展提供了重要的支持。 一、同步时钟系统介绍 同步时钟管理系统的应用范围非常广泛&…

关于NTP时间服务器

NTP(Network Time Protocol) 网络时间协议,工作在UDP的123端口上。是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(局域网…

R语言产生对角阵、次对角阵等矩阵及矩阵运算

R语言产生各种类型的矩阵及矩阵运算 R语言产生一般的矩阵R语言产生单位阵R语言产生次对角阵R语言矩阵的常见运算 R语言产生一般的矩阵 # 依行排列,产生3行5列的矩阵 A matrix(c(1:15),3,5,byrowT)R语言产生单位阵 #产生对角线元素为1的6x6的单位阵 A diag(6) #产…

python课程设计矩阵对角线之和_python对角矩阵

广告关闭 腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元! #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数data5mat(random.…

SimpleMind Pro(电脑版思维导图软件)官方中文版V1.30.0.6068下载 | 电脑版思维导图软件哪个好用?

​ Simplemind Pro 是一款优秀的跨平台电脑版思维导图软件领导者,全球超过1000万用户,可帮助用户组织想法、记住信息并产生新想法,允许用户将主题放置在自由格式布局中的任何位置,或者使用各种自动布局之一,非常…

免费的思维导图软件都有哪些?

思维导图时当下非常热门的软件,学生可以用它来梳理课程知识、帮助巩固记忆;职场打工人可以用它来整理思路、列举待办清单、展示方案等等。但是,现在大部分思维导图软件都需要收费,作为钱包紧紧的新时代人类,还剩下哪些…

免费的思维导图软件哪个好?这篇文章告诉你

随着现在工作和生活节奏的加快,大家都在追求高效率高质量的做事方法,比如在与领导汇报年终报告的时候,只靠口头讲述,对方很难一下子接收到。若我们将输出的内容整理成思维导图的形式,边展示边讲述,对方就能…

画思维导图哪个软件好用

时至今日,思维导图越来越受到人们的喜爱,它是一种实用的思维工具,无论是在事项安排还是读书笔记方面,都有着出众的表现。MindMaster,即亿图思维导图,是由亿图软件公司独立开发的一款跨平台、多功能的思维导…

最实用的免费思维导图软件哪个最好用、用户最多

现在的思维导图其实都还蛮适合程序员的,今天给大家介绍几个我用过并且还觉得使用挺好的思维导图。 MindManager应该算是目前最好的思维导图软件了,尤其是非常美观的交互界面非常养眼。 这几年其实国产软件的整体实力和用户体验是在稳步提升的&#xff0…

思维导图软件哪个好?试用百款导图软件只留下这15个

​思维导图软件哪个好? 这是许多第一次使用思维导图软件的朋友无法回避的问题,看着眼前有数百款思维导图软件,数量多到让人患上选择困难症,不知道要选哪个导图软件好,这就好比在繁星点点的夜空中寻找属于自己的那颗星&…

小白都想知道的思维导图软件哪个好,答案在这里

如今大家想跟他人分享自己的想法、方案等内容时,是不是经常出现自己在这一通激情演讲,但是最后对方一头雾水,甚至是没有很理解自己想表达的东西的情况发生? 其实我有一个好方法能解决这一现象,那就是把我们自己的想法…