手把手带你实现SDRAM控制器(带Verilog代码)

article/2025/10/26 15:14:38

        上篇博客,我们了解了SDRAM的控制命令以及寻址方式,SDRAM芯片需要配合专门的控制电路使用才能发挥功能,这一节我们将一步步分析,使用Verilog搭建一个SDRAM驱动控制器。

目录

  学习目标

  问题分析

初始化模块

信息收集

模块接口确定 

状态机设计

仿真测试

Modelsim仿真:


  学习目标

  • 搭建SDRAM控制器,能读,能写,并且可以自动初始化以及自动刷新。
  • 学习分析问题和使用Verilog解决问题的方法。

  问题分析

          数字系统自顶向下的的设计原则,我们首先可以分析目标中的功能。不难看出SDRAM控制器应该包含以下模块:

  1. 初始化模块
  2. 读控制模块
  3. 写控制模块 
  4. 自动刷新模块      

        各个模块将复用SDRAM顶层模块的输出接口,因此将会存在一个总线仲裁的问题,例如当自刷新模块和读模块同时发出请求时,而我们只能响应其中一个,所以我们解决把输出接口交给谁的问题,因此引出第五个模块:仲裁模块。

        为了验证设计的需要,我们设计的模块接口兼容野火电子的测试平台接口,各部分关系图如下:

初始化模块

        SDRAM在上电之后,在执行正常操作之前需要先执行一次初始化操作。

         初始化的流程都是固定的,查看参考手册给的信息可以确定初始化需要顺序执行以下操作:

  1. 给SDRAM上电,CKE设置为高电平,加载稳定的时钟。
  2. 执行空指令,并且持续100us
  3. 100us过后执行预充电指令,并选中所有Bank(A10为高电平)。
  4. 预充电指令写入后,等待tRP时间,写入自动刷新命令
  5. 之后保持空命令持续tRC时间
  6. tRC时间过后,在此写入自动刷新命令
  7. 自动刷新命令写入后,写入空操作命令持续tRC时间
  8. 等待时间结束后,即可写入模式寄存器配置指令,地址总线 A0-A11 参数不同 辅助模式寄存器不同模式的设置。
  9. 模式寄存器配置指令写入后,还需要保持空操 作命令持续 tMRD 时间
  10. tMRD时间过后,SDRAM初始化即完成

         观察上述步骤,我们的脑海中肯定一直回荡着:计数器~、状态机~ ,对的,是这样的,完全没错!这个模块的设计主要就是围绕 状态机,佐以计数器。

        抛开状态机细节不谈,我们下一步应该要收集我们需要的资料信息:

信息收集

  • 时钟资源:100MHz系统时钟,一个周期就是10us
  • T=100us 为最小等待时间,我们在使用 SDRAM 时,等待时间 T 可适当延长,设定为200us。
  • 开发板的SDRAM信号为W9825G6KH,tRP为两个时钟周期,tMRD3个时钟周期,tRC7个时钟周期。
  • 初始化过程中,至少进行两次自动刷新,也可适当增加刷新次数,设定为8次。
  • 使用的命令集:NOP=4‘b0111,P_CHARGE=4’b0010,AUTO_REF = 4'b0001,M_REG_SET= 4'b0000。

模块接口确定 

         本状态机属于穆尔型状态机,时钟和复位接口作为仅有的两个输入,输出则根据SDRAM命令集接口有 init_cmd (4bit) 、init_ba(Bank辅助,2bit),init_addr(地址辅助,13bit),init_end(完成信号,1bit)

状态机设计

        状态机的设计有三大要素需要考虑:1、状态数目,2、状态转移条件,3、状态输出。

首先我们要设计出状态的数目,我们可以由前面的初始化步骤画出我们的状态转移图:

        平板太滑了,展现不出本人的书法水平,所以大家将就着看。 

可以看到,我们的状态机可以设计9个状态去实现它,可能有同学会问,为什么等待状态也要设置好几个不同的状态呀?能不能只设计一个?这是个好问题,其实这四个等待状态就相当于一个等待状态,我们的计数器也只设计一个,然后每个状态会传递不同的计数周期参数,并在计数完成时清零。当然也不是不可以每个状态设计一个计数器,这样代码会简单很多,其实我也建议大家这样做,我觉得Verilog代码设计思路越简单越好,不要像带着C语言那样一个main走天下的思路去写Verilog。

        接下来就是代码实现:

// 刷新模块 New_Designed By BUCT WWD 2022/9/7
// SDRAM初始化模块,初始化步骤:上电--延时200us--预充电--刷新x8--寄存器设定--完成module sdram_init(
input wire sys_clk, //系统时钟信号
input wire sys_rst_n,//系统复位信号output wire[1:0] init_ba, //Bank辅助位
output wire[3:0] init_cmd,//命令位
output wire[12:0] init_addr,//地址辅助位
output wire init_end //初始化结束标志
);
parameter IDLE = 4'd0,Wait1 = 4'd1,P_CHAR = 4'd2,Wait2 =4'd3,Auto_REF=4'd4,Wait3=4'd5,MRS=4'd6,Wait4=4'd7,OK=4'd8;//九个状态
parameter Init_t = 15'd20000,//初始化200us,各项等待参数TRP_t  = 15'd2, TRC_t  = 15'd7,TMRD_t = 15'd3;parameter P_CHARGE = 4'b0010, //指令集Au_REF = 4'b0001,NOP = 4'b0111,M_REG_SET = 4'b0000;
parameter REF_TIME = 4'd8; //自刷新次数参数
reg[3:0] state,next_state;
reg[14:0] cnt_now; //延时长度寄存器
reg[14:0] cnt_value; //计时计数器值
reg[3:0] REF_cnt; //刷新计数reg[1:0] init_ba_reg; 
reg[3:0] init_cmd_reg;
reg[12:0] init_addr_reg;
reg init_end_reg;always@(posedge sys_clk or negedge sys_rst_n)begin//状态转移
if(sys_rst_n ==1'b0)state <= IDLE;elsestate <= next_state;
endalways@(posedge sys_clk or negedge sys_rst_n)begin//计时器模块if(sys_rst_n ==1'b0)cnt_value <= 15'd0;else if(cnt_value == cnt_now)//计满自动清零cnt_value <= 15'd0;elsecnt_value <= cnt_value +15'd1;
endalways@(posedge sys_clk or negedge sys_rst_n)begin  //刷新次数计数器if(sys_rst_n ==1'b0)REF_cnt <= 4'd0;else if((REF_cnt == REF_TIME)&&(cnt_value == 15'd7))REF_cnt <= 4'd0;else if(next_state==Auto_REF)REF_cnt <= REF_cnt + 4'd1;elseREF_cnt <= REF_cnt;
endalways@(*)begin  //状态转移判断模块,根据计时时间判断是否已经持续相应时间长度
if(sys_rst_n ==1'b0)beginnext_state = IDLE;
end else begincase(state)IDLE: next_state = Wait1;Wait1:if(cnt_value == cnt_now)next_state = P_CHAR;elsenext_state = state;P_CHAR:next_state = Wait2;Wait2:if(cnt_value == cnt_now)next_state = Auto_REF;elsenext_state = state;Auto_REF:next_state = Wait3;Wait3:if((REF_cnt == REF_TIME)&&(cnt_value == cnt_now))//自刷新的转移条件还要满足重复次数next_state = MRS;else if(cnt_value == cnt_now)next_state = Auto_REF;elsenext_state = state;MRS:next_state = Wait4;Wait4:if(cnt_value==cnt_now)next_state = OK;elsenext_state = state;OK:	next_state =OK;endcase
end
endalways@(posedge sys_clk or negedge sys_rst_n)begin 
/*各个state持续时间只的设定,特点:时序模块,由下一个状态判断,
这样,在切换状态的一瞬间,计数器执行清零操作,目标计数值被重新赋值,这样就实现了延时参数的传递*/
if(sys_rst_n ==1'b0)begincnt_now <= 15'd0;
end else begincase(next_state)IDLE:cnt_now <= 15'd0;Wait1: cnt_now <= Init_t;P_CHAR:cnt_now <= 15'd0;Wait2:cnt_now <=  TRP_t;Auto_REF:cnt_now <= 15'd0;Wait3:cnt_now <= TRC_t;MRS:cnt_now <= 15'd0;Wait4:cnt_now <= TMRD_t;OK:cnt_now <=15'd0;endcase
end
endalways@(posedge sys_clk or negedge sys_rst_n)begin //输出模块,三段式状态机
if(sys_rst_n == 1'b0)begininit_cmd_reg <= NOP;init_ba_reg <= 2'b11;init_addr_reg <= 13'h1fff;init_end_reg <= 1'b0;
end else case(next_state)IDLE,Wait1,Wait2,Wait3,Wait4: begininit_cmd_reg <= NOP;init_ba_reg <= 2'b11;init_addr_reg <= 13'h1fff;endP_CHAR:begininit_cmd_reg <= P_CHARGE;init_ba_reg <= 2'b11;init_addr_reg <= 13'h1fff;endAuto_REF:begininit_cmd_reg <= Au_REF;init_ba_reg <= 2'b11;init_addr_reg <= 13'h1fff;endMRS:begininit_cmd_reg <= M_REG_SET;init_ba_reg <= 2'b00;init_addr_reg <={ //地址辅助配置模式寄存器,参数不同,配置的模式不同3'b000,//A12-A10:预留1'b0, //A9=0:读写方式,0:突发读&突发写,1:突发读&单写2'b00, //{A8,A7}=00:标准模式,默认3'b011,//{A6,A5,A4}=011:CAS 潜伏期,010:2,011:3,其他:保留1'b0, //A3=0:突发传输方式,0:顺序,1:隔行3'b111 //{A2,A1,A0}=111:突发长度,000:单字节,001:2 字节//010:4 字节,011:8 字节,111:整页,其他:保留};endOK:begininit_cmd_reg <= NOP;init_ba_reg <= 2'b11;init_addr_reg <= 13'h1fff;init_end_reg <= 1'b1;endendcase
end//最后由于输出是线网,因此需要连续赋值
assign init_cmd = init_cmd_reg;
assign init_addr = init_addr_reg;
assign init_ba = init_ba_reg;
assign init_end = init_end_reg;endmodule

         我写的这个状态机有几个特点,第一采用变量少,第二采用的计数器少,第三逻辑简单,大家可以好好体会一下如何让状态机的状态延长时间的方法。事实上我们可以发现,初始化模块所要求的延时都为时钟周期的整数,并且不会有同时两个延时,整个模块的计数器只有两个:自刷新计数器和延时计数器。我们只需要在每个状态来临时赋给它们相应的计数参数,就可以实现单计数器,多状态共用。

仿真测试

        TB文件

为了验证我们的状态机设计,我们采用野火的验证平台,这次的测试工程共包含三个部分:

  1. sdram_init.v
  2. tb_sdram.v
  3. sdram_model_plus.v //sdram模块模拟
  4. PLL IP核
`timescale  1ns/1ns// Author        : EmbedFire
// Create Date   : 2019/08/25
// Module Name   : tb_sdram_init
// Project Name  : uart_sdram
// Target Devices: Altera EP4CE10F17C8N
// Tool Versions : Quartus 13.0
// Description   : SDRAM初始化模块仿真
// 
// Revision      : V1.0
// Additional Comments:
// 
// 实验平台: 野火_征途Pro_FPGA开发板
// 公司    : http://www.embedfire.com
// 论坛    : http://www.firebbs.cn
// 淘宝    : https://fire-stm32.taobao.commodule  tb_sdram_init();//********************************************************************//
//****************** Internal Signal and Defparam ********************//
//********************************************************************////wire define
//clk_gen
wire            clk_50m         ;   //PLL输出50M时钟
wire            clk_100m        ;   //PLL输出100M时钟
wire            clk_100m_shift  ;   //PLL输出100M时钟,相位偏移-30deg
wire            locked          ;   //PLL时钟锁定信号
wire            rst_n           ;   //复位信号,低有效
//sdram_init
wire    [3:0]   init_cmd        ;   //初始化阶段指令
wire    [1:0]   init_ba         ;   //初始化阶段L-Bank地址
wire    [12:0]  init_addr       ;   //初始化阶段地址总线
wire            init_end        ;   //初始化完成信号//reg define
reg             sys_clk         ;   //系统时钟
reg             sys_rst_n       ;   //复位信号//defparam
//重定义仿真模型中的相关参数
defparam sdram_model_plus_inst.addr_bits = 13;          //地址位宽
defparam sdram_model_plus_inst.data_bits = 16;          //数据位宽
defparam sdram_model_plus_inst.col_bits  = 9;           //列地址位宽
defparam sdram_model_plus_inst.mem_sizes = 2*1024*1024; //L-Bank容量//********************************************************************//
//**************************** Clk And Rst ***************************//
//********************************************************************////时钟、复位信号
initialbeginsys_clk     =   1'b1  ;sys_rst_n   <=  1'b0  ;#200sys_rst_n   <=  1'b1  ;endalways  #10 sys_clk = ~sys_clk;//rst_n:复位信号
assign  rst_n = sys_rst_n & locked;//********************************************************************//
//*************************** Instantiation **************************//
//********************************************************************////------------- clk_gen_inst -------------
clk_gen clk_gen_inst (.inclk0     (sys_clk        ),.areset     (~sys_rst_n     ),.c0         (clk_50m        ),.c1         (clk_100m       ),.c2         (clk_100m_shift ),.locked     (locked         )
);//------------- sdram_init_inst -------------
sdram_init  sdram_init_inst(.sys_clk    (clk_100m   ),.sys_rst_n  (rst_n      ),.init_cmd   (init_cmd   ),.init_ba    (init_ba    ),.init_addr  (init_addr  ),.init_end   (init_end   ));//-------------sdram_model_plus_inst-------------
sdram_model_plus    sdram_model_plus_inst(.Dq     (               ),.Addr   (init_addr      ),.Ba     (init_ba        ),.Clk    (clk_100m_shift ),.Cke    (1'b1           ),.Cs_n   (init_cmd[3]    ),.Ras_n  (init_cmd[2]    ),.Cas_n  (init_cmd[1]    ),.We_n   (init_cmd[0]    ),.Dqm    (2'b0           ),.Debug  (1'b1           ));endmodule

sdram_model 

/***************************************************************************************
作者:	李晟
2003-08-27	V0.1	李晟 添加内存模块倒空功能,在外部需要创建事件:sdram_r ,本SDRAM的内容将会按Bank 顺序damp out 至文件sdram_data.txt 中
×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××*/
//2004-03-04	陈乃奎	修改原程序中将BANK的数据转存入TXT文件的格式
//2004-03-16	陈乃奎	修改SDRAM 的初始化数据
//2004/04/06	陈乃奎	将SDRAM的操作命令以字符形式表示,以便用MODELSIM监视
//2004/04/19	陈乃奎	修改参数 parameter tAC  =   8;
//2010/09/17	罗瑶	修改sdram的大小,数据位宽,dqm宽度;
/****************************************************************************************
*
*    File Name:  sdram_model.V  
*      Version:  0.0f
*         Date:  July 8th, 1999
*        Model:  BUS Functional
*    Simulator:  Model Technology (PC version 5.2e PE)
*
* Dependencies:  None
*
*       Author:  Son P. Huynh
*        Email:  sphuynh@micron.com
*        Phone:  (208) 368-3825
*      Company:  Micron Technology, Inc.
*        Model:  sdram_model (1Meg x 16 x 4 Banks)
*
*  Description:  64Mb SDRAM Verilog model
*
*   Limitation:  - Doesn't check for 4096 cycle refresh
*
*         Note:  - Set simulator resolution to "ps" accuracy
*                - Set Debug = 0 to disable $display messages
*
*   Disclaimer:  THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY 
*                WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY 
*                IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
*                A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
*                Copyright ?1998 Micron Semiconductor Products, Inc.
*                All rights researved
*
* Rev   Author          Phone         Date        Changes
* ----  ----------------------------  ----------  ---------------------------------------
* 0.0f  Son Huynh       208-368-3825  07/08/1999  - Fix tWR = 1 Clk + 7.5 ns (Auto)
*       Micron Technology Inc.                    - Fix tWR = 15 ns (Manual)
*                                                 - Fix tRP (Autoprecharge to AutoRefresh)
*
* 0.0a  Son Huynh       208-368-3825  05/13/1998  - First Release (from 64Mb rev 0.0e)
*       Micron Technology Inc.
****************************************************************************************/`timescale 1ns / 100psmodule sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);parameter addr_bits =	11;parameter data_bits = 	32;parameter col_bits  =	8;parameter mem_sizes =	1048576*2-1;//1 Meg inout     [data_bits - 1 : 0] Dq;input     [addr_bits - 1 : 0] Addr;input                 [1 : 0] Ba;input                         Clk;input                         Cke;input                         Cs_n;input                         Ras_n;input                         Cas_n;input                         We_n;input                 [3 : 0] Dqm;          //高低各8bit//added by xzliinput			  Debug;reg       [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据reg       [data_bits - 1 : 0] Bank1 [0 : mem_sizes];reg       [data_bits - 1 : 0] Bank2 [0 : mem_sizes];reg       [data_bits - 1 : 0] Bank3 [0 : mem_sizes];reg                   [1 : 0] Bank_addr [0 : 3];                // Bank Address Pipelinereg        [col_bits - 1 : 0] Col_addr [0 : 3];                 // Column Address Pipelinereg                   [3 : 0] Command [0 : 3];                  // Command Operation Pipelinereg                   [3 : 0] Dqm_reg0, Dqm_reg1;               // DQM Operation Pipelinereg       [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;reg       [addr_bits - 1 : 0] Mode_reg;reg       [data_bits - 1 : 0] Dq_reg, Dq_dqm;reg       [col_bits - 1 : 0] Col_temp, Burst_counter;reg                           Act_b0, Act_b1, Act_b2, Act_b3;   // Bank Activatereg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;       // Bank Prechargereg                   [1 : 0] Bank_precharge     [0 : 3];       // Precharge Commandreg                           A10_precharge      [0 : 3];       // Addr[10] = 1 (All banks)reg                           Auto_precharge     [0 : 3];       // RW AutoPrecharge (Bank)reg                           Read_precharge     [0 : 3];       // R  AutoPrechargereg                           Write_precharge    [0 : 3];       //  W AutoPrechargeinteger                       Count_precharge    [0 : 3];       // RW AutoPrecharge (Counter)reg                           RW_interrupt_read  [0 : 3];       // RW Interrupt Read with Auto Prechargereg                           RW_interrupt_write [0 : 3];       // RW Interrupt Write with Auto Prechargereg                           Data_in_enable;reg                           Data_out_enable;reg                   [1 : 0] Bank, Previous_bank;reg       [addr_bits - 1 : 0] Row;reg        [col_bits - 1 : 0] Col, Col_brst;// Internal system clockreg                           CkeZ, Sys_clk;reg	[21:0]	dd;// Commands Decodewire      Active_enable    = ~Cs_n & ~Ras_n &  Cas_n &  We_n;wire      Aref_enable      = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;wire      Burst_term       = ~Cs_n &  Ras_n &  Cas_n & ~We_n;wire      Mode_reg_enable  = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;wire      Prech_enable     = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;wire      Read_enable      = ~Cs_n &  Ras_n & ~Cas_n &  We_n;wire      Write_enable     = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;// Burst Length Decodewire      Burst_length_1   = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];wire      Burst_length_2   = ~Mode_reg[2] & ~Mode_reg[1] &  Mode_reg[0];wire      Burst_length_4   = ~Mode_reg[2] &  Mode_reg[1] & ~Mode_reg[0];wire      Burst_length_8   = ~Mode_reg[2] &  Mode_reg[1] &  Mode_reg[0];// CAS Latency Decodewire      Cas_latency_2    = ~Mode_reg[6] &  Mode_reg[5] & ~Mode_reg[4];wire      Cas_latency_3    = ~Mode_reg[6] &  Mode_reg[5] &  Mode_reg[4];// Write Burst Modewire      Write_burst_mode = Mode_reg[9];wire      Debug;		// Debug messages : 1 = On; 0 = Offwire      Dq_chk           = Sys_clk & Data_in_enable;      // Check setup/hold time for DQreg		[31:0]	mem_d;event	sdram_r,sdram_w,compare;assign    Dq               = Dq_reg;                        // DQ buffer// Commands Operation`define   ACT       0`define   NOP       1`define   READ      2`define   READ_A    3`define   WRITE     4`define   WRITE_A   5`define   PRECH     6`define   A_REF     7`define   BST       8`define   LMR       9//    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    parameter tAC  =   8;	//test 6.5
//    parameter tHZ  =   7.0;
//    parameter tOH  =   2.7;
//    parameter tMRD =   2.0;     // 2 Clk Cycles
//    parameter tRAS =  44.0;
//    parameter tRC  =  66.0;
//    parameter tRCD =  20.0;
//    parameter tRP  =  20.0;
//    parameter tRRD =  15.0;
//    parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
//    parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)// Timing Parameters for -7 (PC143) and CAS Latency = 3parameter tAC  =   6.5;	//test 6.5parameter tHZ  =   5.5;parameter tOH  =   2;parameter tMRD =   2.0;     // 2 Clk Cyclesparameter tRAS =  48.0;parameter tRC  =  70.0;parameter tRCD =  20.0;parameter tRP  =  20.0;parameter tRRD =  14.0;parameter tWRa =   7.5;     // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)parameter tWRp =  0.0;     // A2 Version - Precharge mode only (15 ns)// Timing Check variableinteger   MRD_chk;integer   WR_counter [0 : 3];time      WR_chk [0 : 3];time      RC_chk, RRD_chk;time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;integer	test_file;//*****display the command of the sdram**************************************parameter	Mode_Reg_Set	=4'b0000;parameter	Auto_Refresh	=4'b0001;parameter	Row_Active	=4'b0011;parameter	Pre_Charge	=4'b0010;parameter	PreCharge_All	=4'b0010;parameter	Write		=4'b0100;parameter	Write_Pre	=4'b0100;parameter	Read		=4'b0101;parameter	Read_Pre	=4'b0101;parameter	Burst_Stop	=4'b0110;parameter	Nop		=4'b0111;parameter	Dsel		=4'b1111;wire	[3:0]	sdram_control;reg			cke_temp;reg		[8*13:1]	sdram_command;always@(posedge Clk)cke_temp<=Cke;assign	sdram_control={Cs_n,Ras_n,Cas_n,We_n};always@(sdram_control or cke_temp)begincase(sdram_control)Mode_Reg_Set:	sdram_command<="Mode_Reg_Set";Auto_Refresh:	sdram_command<="Auto_Refresh";Row_Active:	sdram_command<="Row_Active";Pre_Charge:	sdram_command<="Pre_Charge";Burst_Stop:	sdram_command<="Burst_Stop";Dsel:		sdram_command<="Dsel";Write:		if(cke_temp==1)sdram_command<="Write";elsesdram_command<="Write_suspend";Read:		if(cke_temp==1)sdram_command<="Read";elsesdram_command<="Read_suspend";Nop:		if(cke_temp==1)sdram_command<="Nop";elsesdram_command<="Self_refresh";default:	sdram_command<="Power_down";endcaseend//*****************************************************initial begin//test_file=$fopen("test_file.txt");endinitial beginDq_reg = {data_bits{1'bz}};{Data_in_enable, Data_out_enable} = 0;{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;{WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;{WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;{RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;{RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;{MRD_chk, RC_chk, RRD_chk} = 0;{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;$timeformat (-9, 0, " ns", 12);//$readmemh("bank0.txt", Bank0);//$readmemh("bank1.txt", Bank1);//$readmemh("bank2.txt", Bank2);//$readmemh("bank3.txt", Bank3);
/*  	for(dd=0;dd<=mem_sizes;dd=dd+1)beginBank0[dd]=dd[data_bits - 1 : 0];Bank1[dd]=dd[data_bits - 1 : 0]+1;Bank2[dd]=dd[data_bits - 1 : 0]+2;Bank3[dd]=dd[data_bits - 1 : 0]+3;end
*/        	initial_sdram(0);endtask	initial_sdram; input		data_sign;reg	[3:0]	data_sign;for(dd=0;dd<=mem_sizes;dd=dd+1)beginmem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};if(data_bits==16)beginBank0[dd]=mem_d[15:0];Bank1[dd]=mem_d[15:0];Bank2[dd]=mem_d[15:0];Bank3[dd]=mem_d[15:0];endelse if(data_bits==32)beginBank0[dd]=mem_d[31:0];Bank1[dd]=mem_d[31:0];Bank2[dd]=mem_d[31:0];Bank3[dd]=mem_d[31:0];endend	endtask// System clock generatoralwaysbegin@(posedge Clk)beginSys_clk = CkeZ;CkeZ = Cke;end@(negedge Clk) beginSys_clk = 1'b0;endendalways @ (posedge Sys_clk) begin// Internal Commamd PipelinedCommand[0] = Command[1];Command[1] = Command[2];Command[2] = Command[3];Command[3] = `NOP;Col_addr[0] = Col_addr[1];Col_addr[1] = Col_addr[2];Col_addr[2] = Col_addr[3];Col_addr[3] = {col_bits{1'b0}};Bank_addr[0] = Bank_addr[1];Bank_addr[1] = Bank_addr[2];Bank_addr[2] = Bank_addr[3];Bank_addr[3] = 2'b0;Bank_precharge[0] = Bank_precharge[1];Bank_precharge[1] = Bank_precharge[2];Bank_precharge[2] = Bank_precharge[3];Bank_precharge[3] = 2'b0;A10_precharge[0] = A10_precharge[1];A10_precharge[1] = A10_precharge[2];A10_precharge[2] = A10_precharge[3];A10_precharge[3] = 1'b0;// Dqm pipeline for ReadDqm_reg0 = Dqm_reg1;Dqm_reg1 = Dqm;// Read or Write with Auto Precharge Counterif (Auto_precharge[0] == 1'b1) beginCount_precharge[0] = Count_precharge[0] + 1;endif (Auto_precharge[1] == 1'b1) beginCount_precharge[1] = Count_precharge[1] + 1;endif (Auto_precharge[2] == 1'b1) beginCount_precharge[2] = Count_precharge[2] + 1;endif (Auto_precharge[3] == 1'b1) beginCount_precharge[3] = Count_precharge[3] + 1;end// tMRD CounterMRD_chk = MRD_chk + 1;// tWR Counter for WriteWR_counter[0] = WR_counter[0] + 1;WR_counter[1] = WR_counter[1] + 1;WR_counter[2] = WR_counter[2] + 1;WR_counter[3] = WR_counter[3] + 1;// Auto Refreshif (Aref_enable == 1'b1) beginif (Debug) $display ("at time %t AREF : Auto Refresh", $time);// Auto Refresh to Auto Refreshif (($time - RC_chk < tRC)&&Debug) begin$display ("at time %t ERROR: tRC violation during Auto Refresh", $time);end// Precharge to Auto Refreshif (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin$display ("at time %t ERROR: tRP violation during Auto Refresh", $time);end// Precharge to Refreshif (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin$display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);end// Record Current tRC timeRC_chk = $time;end// Load Mode Registerif (Mode_reg_enable == 1'b1) begin// Decode CAS Latency, Burst Length, Burst Type, and Write Burst Modeif (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) beginMode_reg = Addr;if (Debug) begin$display ("at time %t LMR  : Load Mode Register", $time);// CAS Latencyif (Addr[6 : 4] == 3'b010)$display ("                            CAS Latency      = 2");else if (Addr[6 : 4] == 3'b011)$display ("                            CAS Latency      = 3");else$display ("                            CAS Latency      = Reserved");// Burst Lengthif (Addr[2 : 0] == 3'b000)$display ("                            Burst Length     = 1");else if (Addr[2 : 0] == 3'b001)$display ("                            Burst Length     = 2");else if (Addr[2 : 0] == 3'b010)$display ("                            Burst Length     = 4");else if (Addr[2 : 0] == 3'b011)$display ("                            Burst Length     = 8");else if (Addr[3 : 0] == 4'b0111)$display ("                            Burst Length     = Full");else$display ("                            Burst Length     = Reserved");// Burst Typeif (Addr[3] == 1'b0)$display ("                            Burst Type       = Sequential");else if (Addr[3] == 1'b1)$display ("                            Burst Type       = Interleaved");else$display ("                            Burst Type       = Reserved");// Write Burst Modeif (Addr[9] == 1'b0)$display ("                            Write Burst Mode = Programmed Burst Length");else if (Addr[9] == 1'b1)$display ("                            Write Burst Mode = Single Location Access");else$display ("                            Write Burst Mode = Reserved");endend else begin$display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);end// REF to LMRif ($time - RC_chk < tRC) begin$display ("at time %t ERROR: tRC violation during Load Mode Register", $time);end// LMR to LMRif (MRD_chk < tMRD) begin$display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);endMRD_chk = 0;end// Active Block (Latch Bank Address and Row Address)if (Active_enable == 1'b1) beginif (Ba == 2'b00 && Pc_b0 == 1'b1) begin{Act_b0, Pc_b0} = 2'b10;B0_row_addr = Addr [addr_bits - 1 : 0];RCD_chk0 = $time;RAS_chk0 = $time;if (Debug) $display ("at time %t ACT  : Bank = 0 Row = %d", $time, Addr);// Precharge to Activate Bank 0if ($time - RP_chk0 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 0", $time);endend else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin{Act_b1, Pc_b1} = 2'b10;B1_row_addr = Addr [addr_bits - 1 : 0];RCD_chk1 = $time;RAS_chk1 = $time;if (Debug) $display ("at time %t ACT  : Bank = 1 Row = %d", $time, Addr);// Precharge to Activate Bank 1if ($time - RP_chk1 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 1", $time);endend else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin{Act_b2, Pc_b2} = 2'b10;B2_row_addr = Addr [addr_bits - 1 : 0];RCD_chk2 = $time;RAS_chk2 = $time;if (Debug) $display ("at time %t ACT  : Bank = 2 Row = %d", $time, Addr);// Precharge to Activate Bank 2if ($time - RP_chk2 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 2", $time);endend else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin{Act_b3, Pc_b3} = 2'b10;B3_row_addr = Addr [addr_bits - 1 : 0];RCD_chk3 = $time;RAS_chk3 = $time;if (Debug) $display ("at time %t ACT  : Bank = 3 Row = %d", $time, Addr);// Precharge to Activate Bank 3if ($time - RP_chk3 < tRP) begin$display ("at time %t ERROR: tRP violation during Activate bank 3", $time);endend else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin$display ("at time %t ERROR: Bank 0 is not Precharged.", $time);end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin$display ("at time %t ERROR: Bank 1 is not Precharged.", $time);end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin$display ("at time %t ERROR: Bank 2 is not Precharged.", $time);end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin$display ("at time %t ERROR: Bank 3 is not Precharged.", $time);end// Active Bank A to Active Bank Bif ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin$display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);end// Load Mode Register to Activeif (MRD_chk < tMRD ) begin$display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);end// Auto Refresh to Activateif (($time - RC_chk < tRC)&&Debug) begin$display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);end// Record variables for checking violationRRD_chk = $time;Previous_bank = Ba;end// Precharge Blockif (Prech_enable == 1'b1) beginif (Addr[10] == 1'b1) begin{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;RP_chk0 = $time;RP_chk1 = $time;RP_chk2 = $time;RP_chk3 = $time;if (Debug) $display ("at time %t PRE  : Bank = ALL",$time);// Activate to Precharge all banksif (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin$display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);end// tWR violation check for writeif (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin$display ("at time %t ERROR: tWR violation during Precharge all bank", $time);endend else if (Addr[10] == 1'b0) beginif (Ba == 2'b00) begin{Pc_b0, Act_b0} = 2'b10;RP_chk0 = $time;if (Debug) $display ("at time %t PRE  : Bank = 0",$time);// Activate to Precharge Bank 0if ($time - RAS_chk0 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);endend else if (Ba == 2'b01) begin{Pc_b1, Act_b1} = 2'b10;RP_chk1 = $time;if (Debug) $display ("at time %t PRE  : Bank = 1",$time);// Activate to Precharge Bank 1if ($time - RAS_chk1 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);endend else if (Ba == 2'b10) begin{Pc_b2, Act_b2} = 2'b10;RP_chk2 = $time;if (Debug) $display ("at time %t PRE  : Bank = 2",$time);// Activate to Precharge Bank 2if ($time - RAS_chk2 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);endend else if (Ba == 2'b11) begin{Pc_b3, Act_b3} = 2'b10;RP_chk3 = $time;if (Debug) $display ("at time %t PRE  : Bank = 3",$time);// Activate to Precharge Bank 3if ($time - RAS_chk3 < tRAS) begin$display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);endend// tWR violation check for writeif ($time - WR_chk[Ba] < tWRp) begin$display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);endend// Terminate a Write Immediately (if same bank or all banks)if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) beginData_in_enable = 1'b0;end// Precharge Command Pipeline for Readif (Cas_latency_3 == 1'b1) beginCommand[2] = `PRECH;Bank_precharge[2] = Ba;A10_precharge[2] = Addr[10];end else if (Cas_latency_2 == 1'b1) beginCommand[1] = `PRECH;Bank_precharge[1] = Ba;A10_precharge[1] = Addr[10];endend// Burst terminateif (Burst_term == 1'b1) begin// Terminate a Write Immediatelyif (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Terminate a Read Depend on CAS Latencyif (Cas_latency_3 == 1'b1) beginCommand[2] = `BST;end else if (Cas_latency_2 == 1'b1) beginCommand[1] = `BST;endif (Debug) $display ("at time %t BST  : Burst Terminate",$time);end// Read, Write, Column Latchif (Read_enable == 1'b1 || Write_enable == 1'b1) begin// Check to see if bank is open (ACT)if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin$display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);end// Activate to Read or Writeif ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))$display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);// Read Commandif (Read_enable == 1'b1) begin// CAS Latency pipelineif (Cas_latency_3 == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[2] = `READ_A;end else beginCommand[2] = `READ;endCol_addr[2] = Addr;Bank_addr[2] = Ba;end else if (Cas_latency_2 == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[1] = `READ_A;end else beginCommand[1] = `READ;endCol_addr[1] = Addr;Bank_addr[1] = Ba;end// Read interrupt Write (terminate Write immediately)if (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Write Commandend else if (Write_enable == 1'b1) beginif (Addr[10] == 1'b1) beginCommand[0] = `WRITE_A;end else beginCommand[0] = `WRITE;endCol_addr[0] = Addr;Bank_addr[0] = Ba;// Write interrupt Write (terminate Write immediately)if (Data_in_enable == 1'b1) beginData_in_enable = 1'b0;end// Write interrupt Read (terminate Read immediately)if (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endend// Interrupting a Write with Autoprechargeif (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) beginRW_interrupt_write[Bank] = 1'b1;if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);end// Interrupting a Read with Autoprechargeif (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) beginRW_interrupt_read[Bank] = 1'b1;if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);end// Read or Write with Auto Prechargeif (Addr[10] == 1'b1) beginAuto_precharge[Ba] = 1'b1;Count_precharge[Ba] = 0;if (Read_enable == 1'b1) beginRead_precharge[Ba] = 1'b1;end else if (Write_enable == 1'b1) beginWrite_precharge[Ba] = 1'b1;endendend//  Read with Auto Precharge Calculation//      The device start internal precharge://          1.  CAS Latency - 1 cycles before last burst//      and 2.  Meet minimum tRAS requirement//       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) beginif ((($time - RAS_chk0 >= tRAS) &&                                                      // Case 2((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) ||                             // Case 1(Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||(RW_interrupt_read[0] == 1'b1)) begin                                              // Case 3Pc_b0 = 1'b1;Act_b0 = 1'b0;RP_chk0 = $time;Auto_precharge[0] = 1'b0;Read_precharge[0] = 1'b0;RW_interrupt_read[0] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);endendif ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) beginif ((($time - RAS_chk1 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||(RW_interrupt_read[1] == 1'b1)) beginPc_b1 = 1'b1;Act_b1 = 1'b0;RP_chk1 = $time;Auto_precharge[1] = 1'b0;Read_precharge[1] = 1'b0;RW_interrupt_read[1] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);endendif ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) beginif ((($time - RAS_chk2 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||(RW_interrupt_read[2] == 1'b1)) beginPc_b2 = 1'b1;Act_b2 = 1'b0;RP_chk2 = $time;Auto_precharge[2] = 1'b0;Read_precharge[2] = 1'b0;RW_interrupt_read[2] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);endendif ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) beginif ((($time - RAS_chk3 >= tRAS) &&((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||(RW_interrupt_read[3] == 1'b1)) beginPc_b3 = 1'b1;Act_b3 = 1'b0;RP_chk3 = $time;Auto_precharge[3] = 1'b0;Read_precharge[3] = 1'b0;RW_interrupt_read[3] = 1'b0;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);endend// Internal Precharge or Bstif (Command[0] == `PRECH) begin                         // Precharge terminate a read with same bank or all banksif (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) beginif (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endendend else if (Command[0] == `BST) begin                  // BST terminate a read to current bankif (Data_out_enable == 1'b1) beginData_out_enable = 1'b0;endendif (Data_out_enable == 1'b0) beginDq_reg <= #tOH {data_bits{1'bz}};end// Detect Read or Write commandif (Command[0] == `READ || Command[0] == `READ_A) beginBank = Bank_addr[0];Col = Col_addr[0];Col_brst = Col_addr[0];if (Bank_addr[0] == 2'b00) beginRow = B0_row_addr;end else if (Bank_addr[0] == 2'b01) beginRow = B1_row_addr;end else if (Bank_addr[0] == 2'b10) beginRow = B2_row_addr;end else if (Bank_addr[0] == 2'b11) beginRow = B3_row_addr;endBurst_counter = 0;Data_in_enable = 1'b0;Data_out_enable = 1'b1;end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) beginBank = Bank_addr[0];Col = Col_addr[0];Col_brst = Col_addr[0];if (Bank_addr[0] == 2'b00) beginRow = B0_row_addr;end else if (Bank_addr[0] == 2'b01) beginRow = B1_row_addr;end else if (Bank_addr[0] == 2'b10) beginRow = B2_row_addr;end else if (Bank_addr[0] == 2'b11) beginRow = B3_row_addr;endBurst_counter = 0;Data_in_enable = 1'b1;Data_out_enable = 1'b0;end// DQ buffer (Driver/Receiver)if (Data_in_enable == 1'b1) begin                                   // Writing Data to Memory// Array bufferif (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];// Dqm operationif (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];//if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];// if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];// Write to memoryif (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1  : 0];if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);//$fdisplay(test_file,"bank:%h	row:%h	col:%h	write:%h",Bank,Row,Col,Dq_dqm);// Output resultif (Dqm == 4'b1111) beginif (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);end else beginif (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);// Record tWR time and reset counterWR_chk [Bank] = $time;WR_counter [Bank] = 0;end// Advance burst counter subroutine#tHZ Burst;end else if (Data_out_enable == 1'b1) begin                         // Reading Data from Memory//$display("%h	,	%h,	%h",Bank0,Row,Col);// Array bufferif (Bank == 2'b00) Dq_dqm [data_bits - 1  : 0] = Bank0 [{Row, Col}];if (Bank == 2'b01) Dq_dqm [data_bits - 1  : 0] = Bank1 [{Row, Col}];if (Bank == 2'b10) Dq_dqm [data_bits - 1  : 0] = Bank2 [{Row, Col}];if (Bank == 2'b11) Dq_dqm [data_bits - 1  : 0] = Bank3 [{Row, Col}];// Dqm operationif (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;// Display resultDq_reg [data_bits - 1  : 0] = #tAC Dq_dqm [data_bits - 1  : 0];if (Dqm_reg0 == 4'b1111) beginif (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);end else beginif (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);end// Advance burst counter subroutineBurst;endend//  Write with Auto Precharge Calculation//      The device start internal precharge://          1.  tWR Clock after last burst//      and 2.  Meet minimum tRAS requirement//       or 3.  Interrupt by a Read or Write (with or without AutoPrecharge)always @ (WR_counter[0]) beginif ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) beginif ((($time - RAS_chk0 >= tRAS) &&                                                          // Case 2(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) ||   // Case 1(Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||(RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin                           // Case 3 (stop count when interrupt)Auto_precharge[0] = 1'b0;Write_precharge[0] = 1'b0;RW_interrupt_write[0] = 1'b0;#tWRa;                          // Wait for tWRPc_b0 = 1'b1;Act_b0 = 1'b0;RP_chk0 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);endendendalways @ (WR_counter[1]) beginif ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) beginif ((($time - RAS_chk1 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||(RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) beginAuto_precharge[1] = 1'b0;Write_precharge[1] = 1'b0;RW_interrupt_write[1] = 1'b0;#tWRa;                          // Wait for tWRPc_b1 = 1'b1;Act_b1 = 1'b0;RP_chk1 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);endendendalways @ (WR_counter[2]) beginif ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) beginif ((($time - RAS_chk2 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||(RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) beginAuto_precharge[2] = 1'b0;Write_precharge[2] = 1'b0;RW_interrupt_write[2] = 1'b0;#tWRa;                          // Wait for tWRPc_b2 = 1'b1;Act_b2 = 1'b0;RP_chk2 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);endendendalways @ (WR_counter[3]) beginif ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) beginif ((($time - RAS_chk3 >= tRAS) &&(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) || (Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||(Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||(Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||(RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) beginAuto_precharge[3] = 1'b0;Write_precharge[3] = 1'b0;RW_interrupt_write[3] = 1'b0;#tWRa;                          // Wait for tWRPc_b3 = 1'b1;Act_b3 = 1'b0;RP_chk3 = $time;if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);endendendtask Burst;begin// Advance Burst CounterBurst_counter = Burst_counter + 1;// Burst Typeif (Mode_reg[3] == 1'b0) begin                                  // Sequential BurstCol_temp = Col + 1;end else if (Mode_reg[3] == 1'b1) begin                         // Interleaved BurstCol_temp[2] =  Burst_counter[2] ^  Col_brst[2];Col_temp[1] =  Burst_counter[1] ^  Col_brst[1];Col_temp[0] =  Burst_counter[0] ^  Col_brst[0];end// Burst Lengthif (Burst_length_2) begin                                       // Burst Length = 2Col [0] = Col_temp [0];end else if (Burst_length_4) begin                              // Burst Length = 4Col [1 : 0] = Col_temp [1 : 0];end else if (Burst_length_8) begin                              // Burst Length = 8Col [2 : 0] = Col_temp [2 : 0];end else begin                                                  // Burst Length = FULLCol = Col_temp;end// Burst Read Single Write            if (Write_burst_mode == 1'b1) beginData_in_enable = 1'b0;end// Data Counterif (Burst_length_1 == 1'b1) beginif (Burst_counter >= 1) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_2 == 1'b1) beginif (Burst_counter >= 2) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_4 == 1'b1) beginif (Burst_counter >= 4) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endend else if (Burst_length_8 == 1'b1) beginif (Burst_counter >= 8) beginData_in_enable = 1'b0;Data_out_enable = 1'b0;endendendendtask//**********************将SDRAM内的数据直接输出到外部文件*******************************///*    integer	sdram_data,ind;always@(sdram_r)beginsdram_data=$fopen("sdram_data.txt");$display("Sdram dampout begin ",sdram_data);
//		   $fdisplay(sdram_data,"Bank0:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank0[ind]);
//		   $fdisplay(sdram_data,"Bank1:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank1[ind]);
//		   $fdisplay(sdram_data,"Bank2:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank2[ind]);
//	           $fdisplay(sdram_data,"Bank3:");for(ind=0;ind<=mem_sizes;ind=ind+1)$fdisplay(sdram_data,"%h	%b",ind,Bank3[ind]);$fclose("sdram_data.txt");        //->compare;end        
*/integer	sdram_data,sdram_mem;reg	[23:0]	aa,cc;reg	[18:0]	bb,ee;always@(sdram_r)begin$display("Sdram dampout begin ",$realtime);sdram_data=$fopen("sdram_data.txt");for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)beginbb=aa[18:0];if(aa<=mem_sizes)$fdisplay(sdram_data,"%0d	%0h",aa,Bank0[bb]);else if(aa<=2*mem_sizes+1)$fdisplay(sdram_data,"%0d	%0h",aa,Bank1[bb]);else if(aa<=3*mem_sizes+2)$fdisplay(sdram_data,"%0d	%0h",aa,Bank2[bb]);else$fdisplay(sdram_data,"%0d	%0h",aa,Bank3[bb]);end	    	    	    $fclose("sdram_data.txt"); sdram_mem=$fopen("sdram_mem.txt");for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)beginee=cc[18:0];if(cc<=mem_sizes)$fdisplay(sdram_mem,"%0h",Bank0[ee]);else if(cc<=2*mem_sizes+1)$fdisplay(sdram_mem,"%0h",Bank1[ee]);else if(cc<=3*mem_sizes+2)$fdisplay(sdram_mem,"%0h",Bank2[ee]);else$fdisplay(sdram_mem,"%0h",Bank3[ee]);end	    	    	    $fclose("sdram_mem.txt");        end        //    // Timing Parameters for -75 (PC133) and CAS Latency = 2
//    specify
//        specparamtAH  =  0.8,                                        // Addr, Ba Hold TimetAS  =  1.5,                                        // Addr, Ba Setup TimetCH  =  2.5,                                        // Clock High-Level WidthtCL  =  2.5,                                        // Clock Low-Level Width
//                    tCK  = 10.0,                                       // Clock Cycle Time  100mhz
//                    tCK  = 7.5,    					// Clock Cycle Time  133mhztCK  =  7,                				// Clock Cycle Time  143mhztDH  =  0.8,                                        // Data-in Hold TimetDS  =  1.5,                                        // Data-in Setup TimetCKH =  0.8,                                        // CKE Hold  TimetCKS =  1.5,                                        // CKE Setup TimetCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  TimetCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//                    tAH  =  1,                                        // Addr, Ba Hold Time
//                    tAS  =  1.5,                                        // Addr, Ba Setup Time
//                    tCH  =  1,                                        // Clock High-Level Width
//                    tCL  =  3,                                        // Clock Low-Level WidthtCK  = 10.0,                                       // Clock Cycle Time  100mhztCK  = 7.5,    					// Clock Cycle Time  133mhz
//                    tCK  =  7,                				// Clock Cycle Time  143mhz
//                    tDH  =  1,                                        // Data-in Hold Time
//                    tDS  =  2,                                        // Data-in Setup Time
//                    tCKH =  1,                                        // CKE Hold  Time
//                    tCKS =  2,                                        // CKE Setup Time
//                    tCMH =  0.8,                                        // CS#, RAS#, CAS#, WE#, DQM# Hold  Time
//                    tCMS =  1.5;                                        // CS#, RAS#, CAS#, WE#, DQM# Setup Time
//        $width    (posedge Clk,           tCH);
//        $width    (negedge Clk,           tCL);
//        $period   (negedge Clk,           tCK);
//        $period   (posedge Clk,           tCK);
//        $setuphold(posedge Clk,    Cke,   tCKS, tCKH);
//        $setuphold(posedge Clk,    Cs_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Cas_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    Ras_n, tCMS, tCMH);
//        $setuphold(posedge Clk,    We_n,  tCMS, tCMH);
//        $setuphold(posedge Clk,    Addr,  tAS,  tAH);
//        $setuphold(posedge Clk,    Ba,    tAS,  tAH);
//        $setuphold(posedge Clk,    Dqm,   tCMS, tCMH);
//        $setuphold(posedge Dq_chk, Dq,    tDS,  tDH);
//    endspecifyendmodule

         具体PLL核的文件就没必要给了,如果不会配置PLL IP核可以看我往期的文章,我们进入modelsim进行仿真:

Modelsim仿真:

可以看到,信息栏打印结果告诉我们执行了一次预充电,和八次自刷新以及配置的寄存器参数,模块功能完美实现,并且我们可以查看波形图数据: 

发现符合预期,模块前仿真阶段设计成功!

        本次单篇内容有些过长了,因此其它部分放在下节详解,通过手把手的分析,我们可以发现,其实数字系统设计并不会很难,我们只要把大的系统分解成小的,然后再把小的使用状态机进行描述,再一步步往上组装,最终可以完成整个系统的设计。


http://chatgpt.dhexx.cn/article/8JmBVNa5.shtml

相关文章

SDRAM 控制器(一)

1、基础知识 SDRAM&#xff08;synchronous Dynamic Random &#xff09;&#xff0c;同步动态随机存储器&#xff0c;同步指内存工作需要同步时钟&#xff0c;内存的命令的发送和数据的接收都以它为标准。动态是指需要不断地刷新来保证数据不丢失&#xff08;电容存储&#xf…

操作系统面试题(二十一):什么是DMA

DMA DMA&#xff08;Direct Memory Access 直接内存访问&#xff09; DMA意味着CPU授予I/O模块权限不涉及在不涉及CPU的情况下依然可以读取/写入内存&#xff0c;即DMA不需要CPUde支持 DMAC&#xff08;DMA 控制器&#xff09; 控制直接内存访问的过程 DMA的优点&#xff1a…

操作系统面试题:虚拟内存是什么,解决了什么问题,如何映射?

虚拟内存是什么&#xff1f; 虚拟内存别称虚拟存储器&#xff08;Virtual Memory&#xff09;。电脑中所运行的程序均需经由内存执行&#xff0c;若执行的程序占用内存很大或很多&#xff0c;则会导致内存消耗殆尽。为解决该问题&#xff0c;Windows中运用了虚拟内存技术&…

Linux面试题(34道)

1、Linux中各个目录的作用 1&#xff09;/ 根目录 2&#xff09;/boot 引导程序&#xff0c;内核等存放的目录 3&#xff09;/sbin 超级用户可以使用的命令的存放目录 4&#xff09;/bin 普通用户可以使用的命令的存放目录 5&#xff09;/lib 根目录下的所程序的共享库目录 6&…

【游戏客户端面试题干货】-- 2021年度最新游戏客户端面试干货(操作系统篇)

【游戏客户端面试题干货】-- 2021年度最新游戏客户端面试干货(操作系统篇&#xff09; 大家好&#xff0c;我是Lampard~~ 经过一番艰苦奋战之后&#xff0c;我终于是进入了心仪的公司。 今天给大家分享一下我在之前精心准备的一套面试知识。 今天和大家分享的是操作系统相关的面…

操作系统和网络(一):计算机网络常见面试题

计算机网络常见面试题总结 1. OSI &#xff0c; TCP/IP &#xff0c;五层协议的体系结构 OSI分层&#xff08;7层&#xff09; &#xff1a;物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。 TCP/IP分层&#xff08;4层&#xff09; &#xff1a;网络接…

【Java实习生】每日面试题打卡——操作系统篇

临近秋招&#xff0c;备战暑期实习&#xff0c;祝大家每天进步亿点点&#xff01;Day15本篇总结的是 操作系统 相关的面试题&#xff0c;后续会每日更新~ 1、请分别简单说一说进程和线程以及它们的区别? 根本区别&#xff1a;进程是操作系统资源分配的基本单位&#xff0c;而…

操作系统面试题(一)

请你说一下进程与线程的概念&#xff0c;以及为什么要有进程线程&#xff0c;其中有什么区别&#xff0c;他们各自又是怎么同步的 参考回答&#xff1a; 基本概念&#xff1a; 进程是对运行时程序的封装&#xff0c;是系统进行资源调度和分配的的基本单位&#xff0c;实现了…

操作系统面试常问——for考研复试面试

关于操作系统的一些面试常问问题 前言&#xff1a; 本人22考研党已上岸&#xff0c;发一些复试准备整理的资料作为对考研准备的一个收尾。由于近几年基本都是线上复试&#xff0c;线上的话会更加注重概念的考察&#xff0c;本人在复试准备期间搜集了面试题&#xff0c;整理了…

操作系统面试题(三)

请你来说一说协程 参考回答&#xff1a; 1、概念&#xff1a; 协程&#xff0c;又称微线程&#xff0c;纤程&#xff0c;英文名Coroutine。协程看上去也是子程序&#xff0c;但执行过程中&#xff0c;在子程序内部可中断&#xff0c;然后转而执行别的子程序&#xff0c;在适…

操作系统面试题(十四):什么是虚拟内存?

虚拟内存&#xff08;virtual Memory&#xff09; 日常生活中&#xff0c;当我们使用电脑的时候&#xff0c;尤其是windows电脑&#xff0c;经常会打开许多软件&#xff0c;这些软件占用的内存已经远远大于计算机的物理内存。之所以会这样&#xff0c;就是因为虚拟内存的存在 …

操作系统面试题:设备管理

管理什么设备&#xff1f; 除cpu,内存外的所有设备 怎么管理设备&#xff1f; 通过将物理设备映射成逻辑设备 为什么要把物理设备映射成逻辑设备&#xff1f; 物理设备是I/O系统中实际安装的设备&#xff0c;物理名通常是字符串或者ID 而逻辑设备的逻辑名比较好记 如何理解…

操作系统面试问题汇总(超详细)

操作系统的组成 1、驱动程序是最底层的、直接控制和监视各类硬件的部分&#xff0c;它们的职责是隐藏硬件的具体细节&#xff0c;并向其他部分提供一个抽象的、通用的接口。 2、内核是操作系统之最内核部分&#xff0c;通常运行在最高特权级&#xff0c;负责提供基础性、结构性…

操作系统面试题(二)

请你讲述一下互斥锁&#xff08;mutex&#xff09;机制&#xff0c;以及互斥锁和读写锁的区别 参考回答&#xff1a; 1、互斥锁和读写锁区别&#xff1a; 互斥锁&#xff1a;mutex&#xff0c;用于保证在任何时刻&#xff0c;都只能有一个线程访问该对象。当获取锁操作失败时…

几率大的杂乱+操作系统面试题(含答案)

其他面试题类型汇总&#xff1a; Java校招极大几率出的面试题&#xff08;含答案&#xff09;----汇总 几率大的网络安全面试题&#xff08;含答案&#xff09; 几率大的多线程面试题&#xff08;含答案&#xff09; 几率大的源码底层原理&#xff0c;杂食面试题&#xff08;含…

操作系统常见面试题

文章目录 进程和线程进程和线程的区别协程与线程的区别进程与线程的切换流程什么是虚拟地址空间为什么虚拟地址空间切换后感觉程序变慢进程间通信方式线程&#xff08;进程&#xff09;间同步方式线程的分类协程&#xff08;纤程&#xff09;线程和协程的区别 进程&#xff08;…

这可能最全的操作系统面试题

文章目录 操作系统简介篇解释一下什么是操作系统操作系统的主要功能软件访问硬件的几种方式解释一下操作系统的主要目的是什么操作系统的种类有哪些为什么 Linux 系统下的应用程序不能直接在 Windows 下运行操作系统结构单体系统分层系统微内核客户-服务器模式 为什么称为陷入内…

操作系统面试题(史上最全、持续更新)

尼恩面试宝典专题40&#xff1a;操作系统面试题&#xff08;史上最全、持续更新&#xff09; 本文版本说明&#xff1a;V28 《尼恩面试宝典》升级规划为&#xff1a; 后续基本上&#xff0c;每一个月&#xff0c;都会发布一次&#xff0c;最新版本&#xff0c;可以联系构师尼…

操作系统面试题总结(2022最新版)

关于作者 &#x1f436; 程序猿周周 ⌨️ 短视频小厂BUG攻城狮 &#x1f93a; 如果文章对你有帮助&#xff0c;记得关注、点赞、收藏&#xff0c;一键三连哦&#xff0c;你的支持将成为我最大的动力 本文是《后端面试小册子》系列的第 4️⃣ 篇文章&#xff0c;该系列将整理和梳…

MFC中MENU的使用

一、创建基于对话框的应用程序框架 1.选择菜单项文件->新建->项目&#xff0c;弹出“新建项目”对话框。 2.直接选择“MFC应用程序”或左侧面板中模板的Visual C下选择MFC&#xff0c;中间窗口中选择MFC应用程序&#xff0c;然后在下面编辑框中键入工程名称&#xff0c;并…