图像超分辨率重建

article/2025/9/16 5:54:50

文章目录

      • 一、前言
      • 二、网络详解
        • 2.1 FSRCNN
        • 2.2 ESPCN
        • 2.3 VDSR
        • 2.4 EDSR
        • 2.5 SR-GAN

一、前言

写这篇文章,主要看了NTIRE 图像复原(Image Restoration)。挑战赛上超分辨率赛道上一些优胜队伍的方法。在这里跟大家分享下,如有错误的地方,还请指正,学习为主。
主要有图像超分辨率(super-resolution)、图像去雾(dehazing)、光谱重建(spectral reconstruction)三个方向。

基于深度学习的超分辨率重建 :

  • 发展历程为:SRCNN[1]FSRCNN[2]ESPCN[3]VDSR[4]EDSR[5]SRGAN[6]

二、网络详解

2.1 FSRCNN

SRCNN[1]是最早用CNN来进行超分辨率重建的论文。FSRCNN[2] 是对SRCNN的改进,主要贡献在于直接原图像进行端对端的重建,在速度上也非常快:如下图
这里写图片描述

2.2 ESPCN

ESPCN [3] 主要提出了subpixel convolution的方法,这种方式在之后很多方法的上采样重建中都有被使用。
这里写图片描述

2.3 VDSR

VDSR [4]第一个将全局残差引入SR的方法,使得训练速度明显加快,在PSNR以及SSIM评价指标上有了很大的提升。VDSR之后大部分方法都采用了这种方式。当然还有很多很优秀的网络例如RED、DRRN、MemNet、LapSR这里不在过多介绍。
这里写图片描述

2.4 EDSR

EDSR[5]是首届NTIRE2017的超分辨率冠军,其主要使用了增强的ResNet,移除了batchnorm,使用了L1 loss训练
这里写图片描述

2.5 SR-GAN

SRGAN则是 将GAN引入SR重建的。此外SRGAN与其他上述方法,不同的是重建得到的图像虽然比上述方法都要清晰,但在PSNR和SSIM上都要比上述方法甚至是bicubic上采用得到都要低很多。主要原因SRGAN使用了style transfer里用到的感知损失(当然也用非GAN方法使用感知损失的,例如EnhanceNet[8]),而感知损失重建的图像在人类的认知视觉上更舒服,但细节恢复上确实会和原图相差很多。
这里写图片描述

超分辨率重建方向:

  • 第一个方向力求恢复出真实可靠的细节部分,应用场景例如医学影像上的超分辨率重建,低分辨率摄像头人脸或者外形的恢复等对细节要求苛刻的场景。
  • 另一个则追求整体视觉效果,细节部位要求不高。例如低分辨率视频电视的恢复、相机模糊图像的恢复等。

NTIRE2018这个比赛:

  • 这次比赛使用的数据集为DIV2K数据集[9],一共包含1000张2K分辨率的RGB图像,其中800张为训练集,100张为验证集,100张为测试集。
  • 评价标准使用了PSNR、SSIM。这就意味着这个场景下使用感知损失重建并不会是个很好的选择。大部分队伍以强化网络特征学习或者添加模糊算子先验为主
  • 经典的bicubic 8倍放大赛道上,Toyota-TI 提出的deep back-projection networks(DBPN)[10]获得了第一名,如下图。DBPN主要思想认为以往的CNN方法中,从LR到SR是一个完全上采用的过程,这过程中没有完全处理好LR到SR的与HR之间的差异。在高倍放大下更为显著。所以DBPN提供了一个up-down的映射单元,希望通过迭代上下交替采样的纠正反馈机制,恢复更好的细节特征。本次NTIRE2018的结果可以看出DBPN在高倍放大下比LapSR、EDSR拥有更好的效果。

这里写图片描述

团队在SR重建上,定位在两个优化问题:

  • 第一,个人理解上应该是与DBPN类似,如何在大尺寸放大获得更好的细节收益。

  • 第二问题则针对Mild、Difficult现实LR图像中存在的噪声,如何在放大图像的同时不放大噪声,减弱噪声对重建的影响。

  • 针对第一个问题,在bicubic上Pixel Overflow使用了EDSR模型,并使用了许多技巧例如RGB Layer Shuffle 、Per-Image Mean、Shift Residual Scaling Factor等.(NTIRE2018报告中介绍该团队使用了sobel滤波器提取SR和ground truth特征以强调边缘和细节的损失,但团队报告中似乎说明了这一方法并未有效)。

  • 针对第二个问题,团队使用在EDSR前增加了一个去噪网络,两者通过将去除输出层的去噪网络与去除输入层的EDSR串接实现端对端的模型训练。如图8,实验表明去除头尾的方式比直接串联两个网络的方式效果更好。

这里写图片描述

鸣谢

  1. Dong C, Chen C L,He K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEETransactions on Pattern Analysis & Machine Intelligence, 2016,38(2):295-307.
  2. Dong C, Chen C L,Tang X. Accelerating the Super-Resolution Convolutional Neural Network[J].2016:391-407.
  3. Shi W, CaballeroJ, Huszar F, et al. Real-Time Single Image and Video Super-Resolution Using anEfficient Sub-Pixel Convolutional Neural Network[C]// IEEE Conference onComputer Vision and Pattern Recognition. IEEE Computer Society, 2016:1874-1883.
  4. Kim J, Lee J K,Lee K M. Accurate Image Super-Resolution Using Very Deep ConvolutionalNetworks[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEEComputer Society, 2016:1646-1654.
  5. Lim B, Son S, KimH, et al. Enhanced Deep Residual Networks for Single ImageSuper-Resolution[C]// Computer Vision and Pattern Recognition Workshops. IEEE,2017:1132-1140.
  6. Ledig C, Theis L,Huszar F, et al. Photo-Realistic Single Image Super-Resolution Using aGenerative Adversarial Network[J]. 2016:105-114.
  7. Johnson J, AlahiA, Li F F. Perceptual Losses for Real-Time Style Transfer andSuper-Resolution[J]. 2016:694-711.
  8. Sajjadi M S M,Schölkopf B, Hirsch M. EnhanceNet: Single Image Super-Resolution ThroughAutomated Texture Synthesis[J]. 2016.
  9. E. Agustsson andR. Timofte. NTIRE 2017 challenge on single image super-resolution: Dataset andstudy. In The IEEE Conference on Computer Vision and Pattern Recogni[1]tion(CVPR) Workshops, July 2017. 1, 2
  10. Haris M,Shakhnarovich G, Ukita N. Deep Back-Projection Networks ForSuper-Resolution[J]. 2018.
  11. Tai Y, Yang J, LiuX, et al. MemNet: A Persistent Memory Network for Image Restoration[J].2017:4549-4557.
  12. Lai W S, Huang JB, Ahuja N, et al. Deep Laplacian Pyramid Networks for Fast and AccurateSuper-Resolution[C]// IEEE Conference on Computer Vision and PatternRecognition. IEEE Computer Society, 2017:5835-5843.
  13. Zhang K, Zuo W,Chen Y, et al. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN forImage Denoising.[J]. IEEE Transactions on Image Processing, 2017,26(7):3142-3155.
  14. Zhang K, Zuo W,Zhang L. Learning a Single Convolutional Super-Resolution Network for MultipleDegradations[J]. 2017.
  15. Blau Y, MichaeliT. The Perception-Distortion Tradeoff[J]. 2017.
  16. NTIRE 2018Challenge on Single Image Super-Resolution: Methods and Results

http://chatgpt.dhexx.cn/article/8CRuooc1.shtml

相关文章

图像超分辨率重建概述

1. 概念: 图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含更大的像素密度、…

深度学习用于图像超分辨率重建综述——超分辨率(一)

文章目录 Deep Learning for Image Super-resolution: A Survey超分辨简介最新进展1. 超分网络的升采样结构2. 可学习的升采样方法3. 全局和局部网络结构设计4. 损失函数设计5. 批归一化6. 课程学习7. 多级监督8. 其他网络设计和学习策略9. 无监督图像超分辨率10. 超分在专有领…

单图像超分辨率重建总结

单图像超分辨率重建总结 定义 单图像超分辨率重建(Single Image Super-resolution Reconstruction,SISR)旨在从给定的低分辨率(LR)图像中,重建含有清晰细节特征的高分辨率(HR)图像…

基于深度学习的图像超分辨率重建技术的研究

1 超分辨率重建技术的研究背景与意义 图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含…

图像超分辨率评价指标

参考文章:https://zhuanlan.zhihu.com/p/50757421 https://blog.csdn.net/weixin_36815313/article/details/108531674 实现方式有两种 skimage.measure.compare_ssim sk_psnr skimage.measure.compare_psnr(im1, im2, 255) print(sk_psnr ) 手动实现 def calc…

超分辨率——综述文章

参考地址:https://www.jiqizhixin.com/articles/2019-03-15-7 超分辨率研究的意义 超分辨率研究的问题是 将低分辨率的图像重建为高分辨率的图像。这种操作主要有这么几种应用场景: 图像压缩方面,在传输过程中可以只传输低分辨率的图片&am…

超分辨率基础

超分辨率综述 Image Super-resolution 的深度学习方法 微信二维码引擎OpenCV开源 微信扫码背后的图像超分辨率技术 技术解析 | 即构移动端超分辨率技术 DIV2K数据集下载 B100/Manga109/Set5/Set14/Urban100 提取码:q4ev 超分难点延伸出的技术方向上采样倍数是整数无…

超分辨率学习

超分辨率学习 传统图像超分辨率重建方法基于插值基于重建基于学习(机器学习)基于深度学习 获取低分图像的方法简单下采样加入模糊和噪声的下采样 超分图像的评价指标客观峰值信噪比PSNR(DB)结构相似度SSIM 主观:意见平…

超分辨率综述

概念: 图像超分辨率(image super resolution, SR)是计算机视觉和图像处理中一类重要的图像处理技术,是指从低分辨率(low resolution, LR)图像中恢复高分辨率(high resolution, HR)图像的过程。它有广泛的现实世界的应用,如医学成像&#xff0…

揭秘超分辨率的正确打开方式

写在前边:图像和视频通常包含着大量的视觉信息,且视觉信息本身具有直观高效的描述能力,所以随着信息技术的高速发展,图像和视频的应用逐渐遍布人类社会的各个领域。近些年来,在计算机图像处理,计算机视觉和…

【超分辨率】3分钟带你读懂

内容概述:超分辨率技术是指从观测到的低分辨率图像重建出相应的高分辨率图像,随着深度学习技术的发展,超分辨率技术在电影、医疗影像、游戏等领域的应用,也愈发广泛。在本文中,帝视科技将深入探讨超分辨率的背景及原理…

基于深度学习的图像超分辨率——综述

2021-Deep Learning for Image Super-resolution:A Survey 基本信息 作者: Zhihao Wang, Jian Chen, Steven C.H. Hoi, Fellow, IEEE 期刊: IEEE Trans Pattern Anal Mach Intell(16.389) 引用: 156(热点论文) 摘要: 本文旨在对…

区块链学习笔记

廖雪峰的官方网站-区块链教程 https://www.liaoxuefeng.com/wiki/1207298049439968 思维导图整理

区块链学习三

目前,作为客户端验证区块链的主要方法有两种:全节点和 SPV 客户端。 全节点 第一个也是最安全的模型是比通过下载和验证从创世块一直到最近发现的块的块来确保块链的有效性。 要欺骗客户端,攻击者需要提供一个完整的替代区块链历史&#x…

区块链学习路径,看这一篇就够了 | FISCO BCOS

FISCO BCOS开源社区已沉淀过百篇文章,覆盖了区块链学习各个阶段。为了方便大家对应自身学习阶段找到合适的教程,我们按照区块链学习成长路径对社区文章进行整理排序,希望沿着这份路径规划,大家都能成为独当一面的区块链专家。 我…

区块链学习路线图 初阶+中阶+高阶

一、报告名称 区块链学习路线图 二、作者 张开翔 微众银行区块链首席架构师 三、若需要pdf版本 关注公号”元宇宙最新报告”,回复关键词“区块链学习路线图”,获取百度网盘免费下载链接。 免责声明:文章报告仅代表原作者观点,版…

区块链学习——原理入门

刚开始学习区块链,由于刚入门,所以借鉴了一些大佬的总结,仅作个人学习使用。 刚开始了解区块链,应当对其概念有所了解,要分清链圈和币圈。首先要了解区块链的概念,原理,核心技术。随后要去读一些…

区块链学习笔记3——BTC协议

区块链学习笔记3——BTC协议 学习视频:北京大学肖臻老师《区块链技术与应用》 笔记参考:北京大学肖臻老师《区块链技术与应用》公开课系列笔记——目录导航页 数字货币所面临的主要挑战 Double spending attack(双花攻击,同一张数…

区块链学习1-证书

加密和签名: 在现实生活中,如果想在某个银行存钱或者取钱,首先要开立账户,这是中心化系统的标准流程。在区块链中,我们同样需要具备这样一个账户: 公链是去中心化的,每个用户自己决定是否开户…

区块链学习笔记及总结【二】

区块链总述 区块链是比特币的核心技术,在比特币系统里用来记录有序且带有时间戳的交易记录。主要用于防止(double spend)双花攻击和篡改以前的交易记录。 这里需要注意是防止篡改,不是防止更改。实际上区块链某些情况还鼓励更改…