写在前面
我坚信,机会永远属于有准备的人,我们与其羡慕他人的成功,不如从此刻起,积累足够多的知识和面试经验,为将来进入更好的公司做好充分的准备!
如何让面试官在短短的几十分钟内认可你的能力? 如何在最短的时间内收获Java技术栈最核心的知识点
这份内容可以算是呕心沥血总结出来的,如果对你有帮助,请不要吝啬你的点赞、评论、收藏!也可以分享给你的同事同学,我们一起进步,祝大家前程有日月!!!
如果大家觉得看起来太麻烦可以私信我要文档(不一定能及时回复)
正文
Java基础(33)
面向对象
什么是面向对象?对比面向过程,是两种不同的处理问题的角度,面向过程更注重事情的每一个步骤及顺序,面向对象更注重事情有哪些参与者(对象)、及各自需要什么,比如洗衣机洗衣服:
- 面向过程:会将任务拆解成一系列的步骤:打开洗衣机----->放衣服----->放洗衣粉----->清洗----->烘干
- 面向对象:会拆出人和洗衣机两个对象:
- 人:打开洗衣机 放衣服 放洗衣粉
- 洗衣机:清洗 烘干
从以上例子能看出,面向过程比较直接高效,而面向对象更易于复用、扩展和维护。
封装:封装的意义,在于明确标识出允许外部使用的所有成员函数和数据项,内部细节对外部调用透明,外部调用无需修改或者关心内部实现
继承:继承基类的方法,并做出自己的改变和/或扩展,子类共性的方法或者属性直接使用父类的,而不需要自己再定义,只需扩展自己个性化的
多态:基于对象所属类的不同,外部对同一个方法的调用,实际执行的逻辑不同
JDK、JRE、JVM之间的区别
JDK:Java Develpment Kit java 开发工具
JRE:Java Runtime Environment java运行时环境
JVM:java Virtual Machine java 虚拟机
==和equals方法之前的区别
- ==:对比的是栈中的值,基本数据类型是变量值,引用类型是堆中内存对象的地址
- equals:object中默认也是采用==比较,通常会重写
Object
public boolean equals(Object obj) {return (this == obj);
}
String
public boolean equals(Object anObject) {if (this == anObject) {return true;}if (anObject instanceof String) {String anotherString = (String)anObject;int n = value.length;if (n == anotherString.value.length) {char v1[] = value;char v2[] = anotherString.value;int i = 0;while (n-- != 0) {if (v1[i] != v2[i])return false;i++;}return true;}}return false;
}
上述代码可以看出,String类中被复写的equals()方法其实是比较两个字符串的内容。
public class StringDemo {public static void main(String args[]) {String str1 = "Hello";String str2 = new String("Hello");String str3 = str2; // 引用传递System.out.println(str1 == str2); // falseSystem.out.println(str1 == str3); // falseSystem.out.println(str2 == str3); // trueSystem.out.println(str1.equals(str2)); // trueSystem.out.println(str1.equals(str3)); // trueSystem.out.println(str2.equals(str3)); // true}}
hashCode()与equals()之间的关系
HashCode介绍:hashCode() 的作用是获取哈希码,也称为散列码;它实际上是返回一个int整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode() 定义在JDK的Object.java中,Java中的任何类都包含有hashCode() 函数。
散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)
以“HashSet如何检查重复”为例子来说明为什么要有hashCode
对象加入HashSet时,HashSet会先计算对象的hashcode值来判断对象加入的位置,看该位置是否有值,如果没有、HashSet会假设对象没有重复出现。但是如果发现有值,这时会调用equals()方法来检查两个对象是否真的相同。如果两者相同,HashSet就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。这样就大大减少了equals的次数,相应就大大提高了执行速度。
- 如果两个对象相等,则hashcode一定也是相同的
- 两个对象相等,对两个对象分别调用equals方法都返回true
- 两个对象有相同的hashcode值,它们也不一定是相等的
- 因此,equals方法被覆盖过,则hashCode方法也必须被覆盖
- hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写hashCode(),则该class的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)
final关键字的作用是什么?
修饰类:表示类不可被继承
修饰方法:表示方法不可被子类覆盖,但是可以重载
修饰变量:表示变量一旦被赋值就不可以更改它的值。
修饰成员变量:
- 如果final修饰的是类变量,只能在静态初始化块中指定初始值或者声明该类变量时指定初始值。
- 如果final修饰的是成员变量,可以在非静态初始化块、声明该变量或者构造器中执行初始值。
修饰局部变量:
系统不会为局部变量进行初始化,局部变量必须由程序员显示初始化。因此使用final修饰局部变量时,即可以在定义时指定默认值(后面的代码不能对变量再赋值),也可以不指定默认值,而在后面的代码中对final变量赋初值(仅一次)
public class FinalVar {final static int a = 0;//再声明的时候就需要赋值 或者静态代码块赋值/**static{a = 0;}*/final int b = 0;//再声明的时候就需要赋值 或者代码块中赋值 或者构造器赋值/*{b = 0;}*/public static void main(String[] args) {final int localA; //局部变量只声明没有初始化,不会报错,与final无关。localA = 0;//在使用之前一定要赋值//localA = 1; 但是不允许第二次赋值}
}
修饰基本类型数据和引用类型数据:
- 如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改;
- 如果是引用类型的变量,则在对其初始化之后便不能再让其指向另一个对象。但是引用的值是可变的。
public class FinalReferenceTest{public static void main(){final int[] iArr={1,2,3,4};iArr[2]=-3;//合法 iArr=null;//非法,对iArr不能重新赋值final Person p = new Person(25);p.setAge(24);//合法p=null;//非法 }
}
为什么局部内部类和匿名内部类只能访问局部final变量?
编译之后会生成两个class文件,Test.class Test1.class
public class Test {public static void main(String[] args) { } //局部final变量a,bpublic void test(final int b) {//jdk8在这里做了优化, 不用写,语法糖,但实际上也是有的,也不能修改final int a = 10;//匿名内部类new Thread(){public void run() {System.out.println(a);System.out.println(b);};}.start();}
}class OutClass {private int age = 12;public void outPrint(final int x) {class InClass {public void InPrint() {System.out.println(x);System.out.println(age);}}new InClass().InPrint();}
}
首先需要知道的一点是: 内部类和外部类是处于同一个级别的,内部类不会因为定义在方法中就会随着方法的执行完毕就被销毁。
这里就会产生问题:当外部类的方法结束时,局部变量就会被销毁了,但是内部类对象可能还存在(只有没有人再引用它时,才会死亡)。这里就出现了一个矛盾:内部类对象访问了一个不存在的变量。为了解决这个问题,就将局部变量复制了一份作为内部类的成员变量,这样当局部变量死亡后,内部类仍可以访问它,实际访问的是局部变量的"copy"。这样就好像延长了局部变量的生命周期
将局部变量复制为内部类的成员变量时,必须保证这两个变量是一样的,也就是如果我们在内部类中修改了成员变量,方法中的局部变量也得跟着改变,怎么解决问题呢?
就将局部变量设置为final,对它初始化后,我就不让你再去修改这个变量,就保证了内部类的成员变量和方法的局部变量的一致性。这实际上也是一种妥协。使得局部变量与内部类内建立的拷贝保持一致。
String、StringBuffer、StringBuilder的区别
- String是不可变的,如果尝试去修改,会新生成一个字符串对象,StringBuffer和StringBuilder是可变的
- StringBuffer是线程安全的,StringBuilder是线程不安全的,所以在单线程环境下StringBuilder效率会更高
重载和重写的区别
- 重载: 发生在同一个类中,方法名必须相同,参数类型不同、个数不同、顺序不同,方法返回值和访问修饰符可以不同,发生在编译时。
- 重写: 发生在父子类中,方法名、参数列表必须相同,返回值范围小于等于父类,抛出的异常范围小于等于父类,访问修饰符范围大于等于父类;如果父类方法访问修饰符为private则子类就不能重写该方法。
public int add(int a,String b)
public String add(int a,String b)
//编译报错
接口和抽象类的区别
- 抽象类可以存在普通成员函数,而接口中只能存在public abstract 方法。
- 抽象类中的成员变量可以是各种类型的,而接口中的成员变量只能是public static final类型的。
- 抽象类只能继承一个,接口可以实现多个。
接口的设计目的,是对类的行为进行约束(更准确的说是一种“有”约束,因为接口不能规定类不可以有什么行为),也就是提供一种机制,可以强制要求不同的类具有相同的行为。它只约束了行为的有无,但不对如何实现行为进行限制。
而抽象类的设计目的,是代码复用。当不同的类具有某些相同的行为(记为行为集合A),且其中一部分行为的实现方式一致时(A的非真子集,记为B),可以让这些类都派生于一个抽象类。在这个抽象类中实现了B,避免让所有的子类来实现B,这就达到了代码复用的目的。而A减B的部分,留给各个子类自己实现。正是因为A-B在这里没有实现,所以抽象类不允许实例化出来(否则当调用到A-B时,无法执行)。
抽象类是对类本质的抽象,表达的是 is a 的关系,比如:BMW
is a Car
。抽象类包含并实现子类的通用特性,将子类存在差异化的特性进行抽象,交由子类去实现。
而接口是对行为的抽象,表达的是 like a 的关系。比如:Bird
like a Aircraft
(像飞行器一样可以飞),但其本质上 is a Bird
。接口的核心是定义行为,即实现类可以做什么,至于实现类主体是谁、是如何实现的,接口并不关心。
使用场景:当你关注一个事物的本质的时候,用抽象类;当你关注一个操作的时候,用接口。
抽象类的功能要远超过接口,但是,定义抽象类的代价高。因为高级语言来说(从实际设计上来说也是)每个类只能继承一个类。在这个类中,你必须继承或编写出其所有子类的所有共性。虽然接口在功能上会弱化许多,但是它只是针对一个动作的描述。而且你可以在一个类中同时实现多个接口。在设计阶段会降低难度
List和Set的区别
- List:有序,按对象进入的顺序保存对象,可重复,允许多个Null元素对象,可以使用Iterator取出所有元素,在逐一遍历,还可以使用get(int index)获取指定下标的元素
- Set:无序,不可重复,最多允许有一个Null元素对象,取元素时只能用Iterator接口取得所有元素,在逐一遍历各个元素
ArrayList和LinkedList区别
- 首先,他们的底层数据结构不同,ArrayList底层是基于数组实现的,LinkedList底层是基于链表实现的
- 由于底层数据结构不同,他们所适用的场景也不同,ArrayList更适合随机查找,LinkedList更适合删除和添加,查询、添加、删除的时间复杂度不同
- 另外ArrayList和LinkedList都实现了List接口,但是LinkedList还额外实现了Deque接口,所以LinkedList还可以当做队列来使用
HashMap和HashTable有什么区别?其底层实现是什么?
区别 :
- HashMap方法没有synchronized修饰,线程非安全,HashTable线程安全;
- HashMap允许key和value为null,而HashTable不允许
底层实现:数组+链表实现,jdk8开始链表高度到8、数组长度超过64,链表转变为红黑树,元素以内部类Node节点存在
- 计算key的hash值,二次hash然后对数组长度取模,对应到数组下标,
- 如果没有产生hash冲突(下标位置没有元素),则直接创建Node存入数组,
- 如果产生hash冲突,先进行equal比较,相同则取代该元素,不同,则判断链表高度插入链表,链表高度达到8,并且数组长度到64则转变为红黑树,长度低于6则将红黑树转回链表
- key为null,存在下标0的位置
谈谈ConcurrentHashMap的扩容机制
1.7版本
- 1.7版本的ConcurrentHashMap是基于Segment分段实现的
- 每个Segment相对于一个小型的HashMap
- 每个Segment内部会进行扩容,和HashMap的扩容逻辑类似
- 先生成新的数组,然后转移元素到新数组中
- 扩容的判断也是每个Segment内部单独判断的,判断是否超过阈值
1.8版本
- 1.8版本的ConcurrentHashMap不再基于Segment实现
- 当某个线程进行put时,如果发现ConcurrentHashMap正在进行扩容那么该线程一起进行扩容
- 如果某个线程put时,发现没有正在进行扩容,则将key-value添加到ConcurrentHashMap中,然后判断是否超过阈值,超过了则进行扩容
- ConcurrentHashMap是支持多个线程同时扩容的
- 扩容之前也先生成一个新的数组
- 在转移元素时,先将原数组分组,将每组分给不同的线程来进行元素的转移,每个线程负责一组或多组的元素转移工作
Jdk1.7到Jdk1.8 HashMap 发生了什么变化(底层)?
- 1.7中底层是数组+链表,1.8中底层是数组+链表+红黑树,加红黑树的目的是提高HashMap插入和查询整体效率
- 1.7中链表插入使用的是头插法,1.8中链表插入使用的是尾插法,因为1.8中插入key和value时需要判断链表元素个数,所以需要遍历链表统计链表元素个数,所以正好就直接使用尾插法
- 1.7中哈希算法比较复杂,存在各种右移与异或运算,1.8中进行了简化,因为复杂的哈希算法的目的就是提高散列性,来提供HashMap的整体效率,而1.8中新增了红黑树,所以可以适当的简化哈希算法,节省CPU资源
说一下HashMap的Put方法
先说HashMap的Put方法的大体流程:
- 根据Key通过哈希算法与与运算得出数组下标
- 如果数组下标位置元素为空,则将key和value封装为Entry对象(JDK1.7中是Entry对象,JDK1.8中是Node对象)并放入该位置
- 如果数组下标位置元素不为空,则要分情况讨论
- 如果是JDK1.7,则先判断是否需要扩容,如果要扩容就进行扩容,如果不用扩容就生成Entry对象,并使用头插法添加到当前位置的链表中
- 如果是JDK1.8,则会先判断当前位置上的Node的类型,看是红黑树Node,还是链表Node
- 如果是红黑树Node,则将key和value封装为一个红黑树节点并添加到红黑树中去,在这个过程中会判断红黑树中是否存在当前key,如果存在则更新value
- 如果此位置上的Node对象是链表节点,则将key和value封装为一个链表Node并通过尾插法插入到链表的最后位置去,因为是尾插法,所以需要遍历链表,在遍历链表的过程中会判断是否存在当前key,如果存在则更新value,当遍历完链表后,将新链表Node插入到链表中,插入到链表后,会看当前链表的节点个数,如果大于等于8,那么则会将该链表转成红黑树
- 将key和value封装为Node插入到链表或红黑树中后,再判断是否需要进行扩容,如果需要就扩容,如果不需要就结束PUT方法
泛型中extends和super的区别
- <? extends T>表示包括T在内的任何T的子类
- <? super T>表示包括T在内的任何T的父类
深拷贝和浅拷贝
深拷贝和浅拷贝就是指对象的拷贝,一个对象中存在两种类型的属性,一种是基本数据类型,一种是实例对象的引用。
- 浅拷贝是指,只会拷贝基本数据类型的值,以及实例对象的引用地址,并不会复制一份引用地址所指向的对象,也就是浅拷贝出来的对象,内部的类属性指向的是同一个对象
- 深拷贝是指,既会拷贝基本数据类型的值,也会针对实例对象的引用地址所指向的对象进行复制,深拷贝出来的对象,内部的属性指向的不是同一个对象
HashMap的扩容机制原理
1.7版本
- 先生成新数组
- 遍历老数组中的每个位置上的链表上的每个元素
- 取每个元素的key,并基于新数组长度,计算出每个元素在新数组中的下标
- 将元素添加到新数组中去
- 所有元素转移完了之后,将新数组赋值给HashMap对象的table属性
1.8版本
- 先生成新数组
- 遍历老数组中的每个位置上的链表或红黑树
- 如果是链表,则直接将链表中的每个元素重新计算下标,并添加到新数组中去
- 如果是红黑树,则先遍历红黑树,先计算出红黑树中每个元素对应在新数组中的下标位置
- 统计每个下标位置的元素个数
- 如果该位置下的元素个数超过了8,则生成一个新的红黑树,并将根节点的添加到新数组的对应位置
- 如果该位置下的元素个数没有超过8,那么则生成一个链表,并将链表的头节点添加到新数组的对应位置
- 所有元素转移完了之后,将新数组赋值给HashMap对象的table属性
CopyOnWriteArrayList的底层原理是怎样的
- 首先CopyOnWriteArrayList内部也是用过数组来实现的,在向CopyOnWriteArrayList添加元素时,会复制一个新的数组,写操作在新数组上进行,读操作在原数组上进行
- 并且,写操作会加锁,防止出现并发写入丢失数据的问题
- 写操作结束之后会把原数组指向新数组
- CopyOnWriteArrayList允许在写操作时来读取数据,大大提高了读的性能,因此适合读多写少的应用场景,但是CopyOnWriteArrayList会比较占内存,同时可能读到的数据不是实时最新的数据,所以不适合实时性要求很高的场景
什么是字节码?采用字节码的好处是什么?
**Java中的编译器和解释器:**Java中引入了虚拟机的概念,即在机器和编译程序之间加入了一层抽象的虚拟的机器。这台虚拟的机器在任何平台上都提供给编译程序一个的共同的接口。编译程序只需要面向虚拟机,生成虚拟机能够理解的代码,然后由解释器来将虚拟机代码转换为特定系统的机器码执行。在Java中,这种供虚拟机理解的代码叫做 字节码(即扩展名为 .class的文件),它不面向任何特定的处理器,只面向虚拟机。
每一种平台的解释器是不同的,但是实现的虚拟机是相同的。Java源程序经过编译器编译后变成字节码,字节码由虚拟机解释执行,虚拟机将每一条要执行的字节码送给解释器,解释器将其翻译成特定机器上的机器码,然后在特定的机器上运行。这也就是解释了Java的编译与解释并存的特点。
Java源代码---->编译器---->jvm可执行的Java字节码(即虚拟指令)---->jvm---->jvm中解释器----->机器可执行的二进制机器码---->程序运行。
**采用字节码的好处:**Java语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以Java程序运行时比较高效,而且,由于字节码并不专对一种特定的机器,因此,Java程序无须重新编译便可在多种不同的计算机上运行。
Java中的异常体系是怎样的
- Java中的所有异常都来自顶级父类Throwable。
- Throwable下有两个子类Exception和Error。
- Error是程序无法处理的错误,一旦出现这个错误,则程序将被迫停止运行。
- Exception不会导致程序停止,又分为两个部分RunTimeException运行时异常和CheckedException检查异常。
- RunTimeException常常发生在程序运行过程中,会导致程序当前线程执行失败。CheckedException常常发生在程序编译过程中,会导致程序编译不通过。
Java中有哪些类加载器
JDK自带有三个类加载器:bootstrap ClassLoader、ExtClassLoader、AppClassLoader。
- BootStrapClassLoader是ExtClassLoader的父类加载器,默认负责加载%JAVA_HOME%lib下的jar包和class文件。
- ExtClassLoader是AppClassLoader的父类加载器,负责加载%JAVA_HOME%/lib/ext文件夹下的jar包和class类。
- AppClassLoader是自定义类加载器的父类,负责加载classpath下的类文件。
说说类加载器双亲委派模型
JVM中存在三个默认的类加载器:
- BootstrapClassLoader
- ExtClassLoader
- AppClassLoader
AppClassLoader的父加载器是ExtClassLoader,ExtClassLoader的父加载器是BootstrapClassLoader。
JVM在加载一个类时,会调用AppClassLoader的loadClass方法来加载这个类,不过在这个方法中,会先使用ExtClassLoader的loadClass方法来加载类,同样ExtClassLoader的loadClass方法中会先使用BootstrapClassLoader来加载类,如果BootstrapClassLoader加载到了就直接成功,如果BootstrapClassLoader没有加载到,那么ExtClassLoader就会自己尝试加载该类,如果没有加载到,那么则会由AppClassLoader来加载这个类。
所以,双亲委派指得是,JVM在加载类时,会委派给Ext和Bootstrap进行加载,如果没加载到才由自己进行加载。
GC如何判断对象可以被回收
- 引用计数法:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收,
- 可达性分析法:从 GC Roots 开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是不可用的,那么虚拟机就判断是可回收对象。
引用计数法,可能会出现A 引用了 B,B 又引用了 A,这时候就算他们都不再使用了,但因为相互引用 计数器=1 永远无法被回收。
GC Roots的对象有:
- 虚拟机栈(栈帧中的本地变量表)中引用的对象
- 方法区中类静态属性引用的对象
- 方法区中常量引用的对象
- 本地方法栈中JNI(即一般说的Native方法)引用的对象
可达性算法中的不可达对象并不是立即死亡的,对象拥有一次自我拯救的机会。对象被系统宣告死亡至少要经历两次标记过程:第一次是经过可达性分析发现没有与GC Roots相连接的引用链,第二次是在由虚拟机自动建立的Finalizer队列中判断是否需要执行finalize()方法。
当对象变成(GC Roots)不可达时,GC会判断该对象是否覆盖了finalize方法,若未覆盖,则直接将其回收。否则,若对象未执行过finalize方法,将其放入F-Queue队列,由一低优先级线程执行该队列中对象的finalize方法。执行finalize方法完毕后,GC会再次判断该对象是否可达,若不可达,则进行回收,否则,对象“复活”
每个对象只能触发一次finalize()方法
由于finalize()方法运行代价高昂,不确定性大,无法保证各个对象的调用顺序,不推荐大家使用,建议遗忘它。
JVM中哪些是线程共享区
堆区和方法区是所有线程共享的,栈、本地方法栈、程序计数器是每个线程独有的
你们项目如何排查JVM问题
对于还在正常运行的系统:
- 可以使用jmap来查看JVM中各个区域的使用情况
- 可以通过jstack来查看线程的运行情况,比如哪些线程阻塞、是否出现了死锁
- 可以通过jstat命令来查看垃圾回收的情况,特别是fullgc,如果发现fullgc比较频繁,那么就得进行调优了
- 通过各个命令的结果,或者jvisualvm等工具来进行分析
- 首先,初步猜测频繁发送fullgc的原因,如果频繁发生fullgc但是又一直没有出现内存溢出,那么表示fullgc实际上是回收了很多对象了,所以这些对象最好能在younggc过程中就直接回收掉,避免这些对象进入到老年代,对于这种情况,就要考虑这些存活时间不长的对象是不是比较大,导致年轻代放不下,直接进入到了老年代,尝试加大年轻代的大小,如果改完之后,fullgc减少,则证明修改有效
- 同时,还可以找到占用CPU最多的线程,定位到具体的方法,优化这个方法的执行,看是否能避免某些对象的创建,从而节省内存
对于已经发生了OOM的系统:
- 一般生产系统中都会设置当系统发生了OOM时,生成当时的dump文件(-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/base)
- 我们可以利用jsisualvm等工具来分析dump文件
- 根据dump文件找到异常的实例对象,和异常的线程(占用CPU高),定位到具体的代码
- 然后再进行详细的分析和调试
总之,调优不是一蹴而就的,需要分析、推理、实践、总结、再分析,最终定位到具体的问题
一个对象从加载到JVM,再到被GC清除,都经历了什么过程?
- 用户创建一个对象,JVM首先需要到方法区去找对象的类型信息。然后再创建对象。
- JVM要实例化一个对象,首先要在堆当中先创建一个对象。-> 半初始化状态
- 对象首先会分配在堆内存中新生代的Eden。然后经过一次Minor GC,对象如果存活,就会进入S区。在后续的每次GC中,如果对象一直存活,就会在S区来回拷贝,每移动一次,年龄加1。-> 多大年龄才会移入老年代? 年龄最大15, 超过一定年龄后,对象转入老年代。
- 当方法执行结束后,栈中的指针会先移除掉。
- 堆中的对象,经过Full GC,就会被标记为垃圾,然后被GC线程清理掉。
怎么确定一个对象到底是不是垃圾?
- 引用计数: 这种方式是给堆内存当中的每个对象记录一个引用个数。引用个数为0的就认为是垃圾。这是早期JDK中使用的方式。引用计数无法解决循环引用的问题。
- 根可达算法: 这种方式是在内存中,从引用根对象向下一直找引用,找不到的对象就是垃圾。
JVM有哪些垃圾回收算法?
- MarkSweep 标记清除算法
:这个算法分为两个阶段,标记阶段:把垃圾内存标记出来,清除阶段:直接将垃圾内存回收。
这种算法是比较简单的,但是有个很严重的问题,就是会产生大量的内存碎片。 - Copying 拷贝算法:
为了解决标记清除算法的内存碎片问题,就产生了拷贝算法。拷贝算法将内存分为大小相等的两半,每次只使用其中一半。垃圾回收时,将当前这一块的存活对象全部拷贝到另一半,然后当前这一半内存就可以直接清除。
这种算法没有内存碎片,但是他的问题就在于浪费空间。而且,他的效率跟存货对象的个数有关。 - MarkCompack 标记压缩算法:为了解决拷贝算法的缺陷,就提出了标记压缩算法。这种算法在标记阶段跟标记清除算法是一样的,但是在完成标记之后,不是直接清理垃圾内存,而是将存活对象往一端移动,然后将端边界以外的所有内存直接清除。
这三种算法各有利弊,各自有各自的适合场景。
什么是STW?
STW: Stop-The-World,是在垃圾回收算法执行过程当中,需要将JVM内存冻结的一种状态。在STW状态下,JAVA的所有线程都是停止执行的-GC线程除外,native方法可以执行,但是,不能与JVM交互。GC各种算法优化的重点,就是减少STW,同时这也是JVM调优的重点。
JVM有哪些垃圾回收器?
- 新生代收集器:
- Serial
- ParNew
- Parallel Scavenge
- 老年代收集器:
- CMS
- Serial Old
- Parallel Old
- 整堆收集器:
- G1
垃圾回收分为哪些阶段
GC分为四个阶段:
- 第一:初始标记 标记出GCRoot直接引用的对象。STW
- 第二:标记Region,通过RSet标记出上一个阶段标记的Region引用到的Old区Region。
- 第三:并发标记阶段:跟CMS的步骤是差不多的。只是遍历的范围不再是整个Old区,而只需要遍历第二步标记出来的Region。
- 第四:重新标记: 跟CMS中的重新标记过程是差不多的。
- 第五:垃圾清理:与CMS不同的是,G1可以采用拷贝算法,直接将整个Region中的对象拷贝到另一个Region。而这个阶段,G1只选择垃圾较多的Region来清理,并不是完全清理。
什么是三色标记?
三色标记:是一种逻辑上的抽象。将每个内存对象分成三种颜色:
- 黑色:表示自己和成员变量都已经标记完毕。
- 灰色:自己标记完了,但是成员变量还没有完全标记完。
- 白色:自己未标记完。
JVM参数有哪些?
JVM参数大致可以分为三类:
- 标注指令: -开头,这些是所有的HotSpot都支持的参数。可以用java -help 打印出来。
- 非标准指令: -X开头,这些指令通常是跟特定的HotSpot版本对应的。可以用java -X 打印出来。
- 不稳定参数: -XX 开头,这一类参数是跟特定HotSpot版本对应的,并且变化非常大。详细的文档资料非常少。在JDK1.8版本下,有几个常用的不稳定指令:
java -XX:+PrintCommandLineFlags : 查看当前命令的不稳定指令。
java -XX:+PrintFlagsInitial : 查看所有不稳定指令的默认值。
java -XX:+PrintFlagsFinal: 查看所有不稳定指令最终生效的实际值。
Java并发(20)
线程的生命周期?线程有几种状态
线程通常有五种状态,创建,就绪,运行、阻塞和死亡状态:
- 新建状态(New):新创建了一个线程对象。
- 就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start方法。该状态的线程位于可运行线程池中,变得可运行,等待获取CPU的使用权。
- 运行状态(Running):就绪状态的线程获取了CPU,执行程序代码。
- 阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。
- 死亡状态(Dead):线程执行完了或者因异常退出了run方法,该线程结束生命周期。
阻塞的情况又分为三种:
- 等待阻塞:运行的线程执行wait方法,该线程会释放占用的所有资源,JVM会把该线程放入“等待池”中。进入这个状态后,是不能自动唤醒的,必须依靠其他线程调用notify或notifyAll方法才能被唤醒,wait是object类的方法
- 同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入“锁池”中。
- 其他阻塞:运行的线程执行sleep或join方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep状态超时、join等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。sleep是Thread类的方法
sleep()、wait()、join()、yield()之间的的区别
锁池:所有需要竞争同步锁的线程都会放在锁池当中,比如当前对象的锁已经被其中一个线程得到,则其他线程需要在这个锁池进行等待,当前面的线程释放同步锁后锁池中的线程去竞争同步锁,当某个线程得到后会进入就绪队列进行等待cpu资源分配。
等待池:当我们调用wait()方法后,线程会放到等待池当中,等待池的线程是不会去竞争同步锁。只有调用了notify()或notifyAll()后等待池的线程才会开始去竞争锁,notify()是随机从等待池选出一个线程放到锁池,而notifyAll()是将等待池的所有线程放到锁池当中
- sleep 是 Thread 类的静态本地方法,wait 则是 Object 类的本地方法。
- sleep方法不会释放lock,但是wait会释放,而且会加入到等待队列中。
sleep就是把cpu的执行资格和执行权释放出去,不再运行此线程,当定时时间结束再取回cpu资源,参与cpu的调度,获取到cpu资源后就可以继续运行了。而如果sleep时该线程有锁,那么sleep不会释放这个锁,而是把锁带着进入了冻结状态,也就是说其他需要这个锁的线程根本不可能获取到这个锁。也就是说无法执行程序。如果在睡眠期间其他线程调用了这个线程的interrupt方法,那么这个线程也会抛出interruptexception异常返回,这点和wait是一样的。
- sleep方法不依赖于同步器synchronized,但是wait需要依赖synchronized关键字。
- sleep不需要被唤醒(休眠之后推出阻塞),但是wait需要(不指定时间需要被别人中断)。
- sleep 一般用于当前线程休眠,或者轮循暂停操作,wait 则多用于多线程之间的通信。
- sleep 会让出 CPU 执行时间且强制上下文切换,而 wait 则不一定,wait 后可能还是有机会重新竞争到锁继续执行的。
- yield()执行后线程直接进入就绪状态,马上释放了cpu的执行权,但是依然保留了cpu的执行资格,所以有可能cpu下次进行线程调度还会让这个线程获取到执行权继续执行
- join()执行后线程进入阻塞状态,例如在线程B中调用线程A的join(),那线程B会进入到阻塞队列,直到线程A结束或中断线程
public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(new Runnable() {@Overridepublic void run() {try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("22222222");}});t1.start();t1.join();// 这行代码必须要等t1全部执行完毕,才会执行System.out.println("1111");
}22222222
1111
对线程安全的理解
不是线程安全、应该是内存安全,堆是共享内存,可以被所有线程访问,当多个线程访问一个对象时,如果不用进行额外的同步控制或其他的协调操作,调用这个对象的行为都可以获得正确的结果,我们就说这个对象是线程安全的。
堆是进程和线程共有的空间,分全局堆和局部堆。全局堆就是所有没有分配的空间,局部堆就是用户分配的空间。堆在操作系统对进程初始化的时候分配,运行过程中也可以向系统要额外的堆,但是用完了要还给操作系统,要不然就是内存泄漏。在Java中,堆是Java虚拟机所管理的内存中最大的一块,是所有线程共享的一块内存区域,在虚拟机启动时创建。堆所存在的内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。
栈是每个线程独有的,保存其运行状态和局部自动变量的。栈在线程开始的时候初始化,每个线程的栈互相独立,因此,栈是线程安全的。操作系统在切换线程的时候会自动切换栈。栈空间不需要在高级语言里面显式的分配和释放。
目前主流操作系统都是多任务的,即多个进程同时运行。为了保证安全,每个进程只能访问分配给自己的内存空间,而不能访问别的进程的,这是由操作系统保障的。
在每个进程的内存空间中都会有一块特殊的公共区域,通常称为堆(内存)。进程内的所有线程都可以访问到该区域,这就是造成问题的潜在原因。
Thread和Runable的区别
Thread和Runnable的实质是继承关系,没有可比性。无论使用Runnable还是Thread,都会new Thread,然后执行run方法。用法上,如果有复杂的线程操作需求,那就选择继承Thread,如果只是简单的执行一个任务,那就实现runnable。
//会卖出多一倍的票
public class Test {public static void main(String[] args) {// TODO Auto-generated method stubnew MyThread().start();new MyThread().start();}static class MyThread extends Thread{private int ticket = 5;public void run(){while(true){System.out.println("Thread ticket = " + ticket--);if(ticket < 0){break;}}}}
}
//正常卖出
public class Test2 {public static void main(String[] args) {// TODO Auto-generated method stubMyThread2 mt=new MyThread2();new Thread(mt).start();new Thread(mt).start();}static class MyThread2 implements Runnable{private int ticket = 5;public void run(){while(true){System.out.println("Runnable ticket = " + ticket--);if(ticket < 0){break;}<